A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network
The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main...
Saved in:
| Published in: | CAAI Transactions on Intelligence Technology Vol. 8; no. 4; pp. 1124 - 1139 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beijing
John Wiley & Sons, Inc
01.12.2023
Wiley |
| Subjects: | |
| ISSN: | 2468-2322, 2468-6557, 2468-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods. |
|---|---|
| AbstractList | The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods. Abstract The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the dynamic performance of the alpha–beta filter algorithm, a new prediction learning model is proposed in this study. The proposed model has two main components: (1) the alpha–beta filter algorithm is the main prediction module, and (2) the learning module is a feedforward artificial neural network (FF‐ANN). Furthermore, the model uses two inputs, temperature sensor and humidity sensor data, and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings. Using the novel proposed technique, prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network, and also reduces the root mean square error (RMSE) and mean absolute error (MAE). We carried out different experiments with different experimental setups. The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter. A higher prediction accuracy was achieved, and the MAE and RMSE were 35.1%–38.2% respectively. The final proposed model results show increased performance when compared to traditional methods. |
| Author | Lee, Eunkyu Kim, Kyungsup Khan, Junaid |
| Author_xml | – sequence: 1 givenname: Junaid orcidid: 0000-0002-2393-3132 surname: Khan fullname: Khan, Junaid organization: Chungnam National University – sequence: 2 givenname: Eunkyu surname: Lee fullname: Lee, Eunkyu organization: Chungnam National University – sequence: 3 givenname: Kyungsup surname: Kim fullname: Kim, Kyungsup email: sclkim@cnu.ac.kr organization: Chungnam National University |
| BookMark | eNp9kc1q3DAUhUVJoGmSTZ5A0F1hUv3bWoahPwOBbpK1uNbPWFPHmsoahtn1HfKGfZLKcQullK6udPnO4XDPG3Q2ptEjdEPJLSVCv7exsFvKqGhfoQsmVLtinLGzP96v0fU07QghVGsteXOB8h3u47b3Ge-zd9GWmEYM1h4y2NOP788dTN5hGPY9zD9fAIc4lMrDsE05lv4JH6Y4bnHpPQ7eu5DyEXLV5BJDtBEGPPpqN49yTPnrFToPMEz--te8RI8fPzysP6_uv3zarO_uV1YQ3q58A0o32kpBiJZOCMqDVcAktNCJwDXxVgUnAYR1xKqGdsyJVtYEoaWk4Zdos_i6BDuzz_EJ8skkiOZlkfLWzBnt4E0rg9ANldK21UJxLXxwpKMQFO8009Xr7eK1z-nbwU_F7NIhjzW-4URTraSgqlJkoWxO05R9MLUSmE9aMsTBUGLmouYtMy9FVcm7vyS_g_4Tpgt8jIM__Yc0680DWzQ_Af_vqBw |
| CitedBy_id | crossref_primary_10_7454_jessd_v7i2_1258 crossref_primary_10_1109_ACCESS_2024_3410316 crossref_primary_10_1016_j_enganabound_2023_07_007 crossref_primary_10_1016_j_mtcomm_2023_106718 crossref_primary_10_1016_j_icheatmasstransfer_2024_107829 crossref_primary_10_3390_buildings14051339 crossref_primary_10_3390_coatings13050838 crossref_primary_10_1016_j_compbiomed_2025_110926 crossref_primary_10_1016_j_mtcomm_2024_109765 crossref_primary_10_3390_app13042743 crossref_primary_10_3390_app132312850 crossref_primary_10_32604_cmc_2024_056222 crossref_primary_10_3390_buildings14030662 crossref_primary_10_3390_buildings14051382 crossref_primary_10_1007_s12206_024_0811_8 crossref_primary_10_1016_j_nexus_2025_100374 crossref_primary_10_1007_s00419_024_02726_y crossref_primary_10_1016_j_jwpe_2024_105072 crossref_primary_10_3390_app132212092 crossref_primary_10_1515_tsd_2024_2623 crossref_primary_10_3390_buildings13102500 crossref_primary_10_3390_make7020029 crossref_primary_10_1016_j_engfracmech_2024_110336 crossref_primary_10_1109_ACCESS_2023_3236504 crossref_primary_10_1016_j_procs_2024_10_097 crossref_primary_10_1109_TIV_2023_3331969 crossref_primary_10_1007_s11837_024_06904_9 crossref_primary_10_1109_ACCESS_2023_3287851 crossref_primary_10_1007_s11036_023_02109_7 crossref_primary_10_1109_ACCESS_2024_3430830 crossref_primary_10_3390_agriculture13091700 crossref_primary_10_1109_ACCESS_2024_3377690 |
| Cites_doi | 10.1016/j.heliyon.2018.e00938 10.3390/technologies7020030 10.1109/ICACCCT.2014.7019323 10.3390/s17061344 10.1109/access.2020.3037081 10.1016/B978-0-12-811318-9.00018-1 10.3390/jsan10020029 10.1109/jsen.2018.2806932 10.1038/nature14236 10.3390/sym11010094 10.1609/aaai.v29i1.9513 10.3390/s18082552 10.1162/neco.1995.7.5.867 10.3390/electronics7100222 10.3390/app12199429 10.3233/ifs‐141183 10.1016/j.geoderma.2016.09.027 10.1109/jsyst.2020.2990409 10.1109/taes.1987.310893 10.21437/Interspeech.2014-80 10.3390/s19183946 10.1109/access.2019.2915381 10.1007/s13042‐011‐0019‐y 10.1016/S0169-2070(97)00044-7 10.3115/v1/D14-1181 10.1007/s12559‐014‐9255‐2 10.1109/access.2021.3073876 10.1088/1742‐6596/659/1/012022 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1049/cit2.12148 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2468-2322 |
| EndPage | 1139 |
| ExternalDocumentID | oai_doaj_org_article_85f497155c8d486394efd0b1af63b929 10_1049_cit2_12148 CIT212148 |
| Genre | article |
| GroupedDBID | 0R~ 0SF 1OC 24P 6I. AACTN AAEDW AAFTH AAHHS AAHJG AAJGR AALRI AAXUO ABMAC ABQXS ACCFJ ACCMX ACESK ACGFS ACXQS ADBBV ADVLN ADZOD AEEZP AEQDE AEXQZ AFKRA AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M41 M43 NCXOZ O9- OCL OK1 PIMPY RIE RIG ROL RUI SSZ AAMMB AAYWO AAYXX ACVFH ADCNI ADMLS AEFGJ AEUPX AFFHD AFPUW AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4038-e7a6979c540095d4413fc6a25a8ab4f390ec6fd5aa4cd0c671b2d485edff81073 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888647200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2468-2322 2468-6557 |
| IngestDate | Fri Oct 03 12:30:30 EDT 2025 Sat Jul 26 00:12:27 EDT 2025 Tue Nov 18 20:57:24 EST 2025 Wed Oct 29 21:12:12 EDT 2025 Wed Jan 22 16:15:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4038-e7a6979c540095d4413fc6a25a8ab4f390ec6fd5aa4cd0c671b2d485edff81073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2393-3132 |
| OpenAccessLink | https://www.proquest.com/docview/3091965416?pq-origsite=%requestingapplication% |
| PQID | 3091965416 |
| PQPubID | 6852857 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85f497155c8d486394efd0b1af63b929 proquest_journals_3091965416 crossref_citationtrail_10_1049_cit2_12148 crossref_primary_10_1049_cit2_12148 wiley_primary_10_1049_cit2_12148_CIT212148 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 20231201 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | CAAI Transactions on Intelligence Technology |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 9 2019; 7 2011; 2 2019; 11 2019; 19 2020; 15 2004 1992 1987; AES‐23 1995; 7 2003; 12 2020; 8 2018; 7 2018; 18 2021; 10 2015; 29 2018; 4 2017; 17 2015; 333 2022; 12 2015; 518 2017 2015; 659 2014 2017; 285 2014; 6 1998; 14 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Dostal Z. (e_1_2_10_23_1) 2003; 12 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Munu M. (e_1_2_10_25_1) 1992 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_26_1 |
| References_xml | – volume: 12 issue: 19 year: 2022 article-title: A performance evaluation of the alpha‐beta (α‐β) filter algorithm with different learning models: DBN, DELM, and SVM publication-title: Appl. Sci. – volume: 4 issue: 11 year: 2018 article-title: State‐of‐the‐art in artificial neural network applications: a survey publication-title: Heliyon – volume: 14 start-page: 35 year: 1998 end-page: 62 article-title: Forecasting with artificial neural networks:: the state of the art publication-title: Int. J. Forecast. – volume: 11 issue: 1 year: 2019 article-title: Improving accuracy of the Kalman filter algorithm in dynamic conditions using ANN‐based learning module publication-title: Symmetry – start-page: 985 year: 2004 end-page: 990 – volume: 9 start-page: 61548 year: 2021 end-page: 61564 article-title: An improved alpha beta filter using a deep extreme learning machine publication-title: IEEE Access – volume: 18 start-page: 3016 issue: 7 year: 2018 end-page: 3027 article-title: Adaptive‐gain regulation of extended Kalman filter for use in inertial and magnetic units based on hidden Markov model publication-title: IEEE Sensor. J. – volume: 8 start-page: 204744 year: 2020 end-page: 204762 article-title: Dynamic user preference parameters selection and energy consumption optimization for smart homes using deep extreme learning machine and bat algorithm publication-title: IEEE Access – volume: 17 issue: 6 year: 2017 article-title: Feed‐forward neural network prediction of the mechanical properties of sandcrete materials publication-title: Sensors – volume: 7 issue: 10 year: 2018 article-title: A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings publication-title: Electronics – start-page: 1369 year: 2014 end-page: 1373 – volume: 6 start-page: 376 issue: 3 year: 2014 end-page: 390 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognit. Comput. – volume: 10 issue: 2 year: 2021 article-title: A feed‐forward neural network approach for energy‐based acoustic source localization publication-title: J. Sens. Actuator Netw. – volume: 12 start-page: 56 issue: 3 year: 2003 end-page: 59 article-title: Exploitation of higher order moments increase the tracking aircraft by the extended alpha‐beta filter publication-title: Radioengineering‐Prague – year: 2014 – volume: 15 start-page: 771 issue: 1 year: 2020 end-page: 779 article-title: Quality of service constrained‐resource allocation scheme for multiple target tracking in radar sensor network publication-title: IEEE Syst. J. – volume: 659 year: 2015 article-title: Performance evaluation of iterated extended Kalman filter with variable step‐length publication-title: J. Phys. Conf. Ser. – volume: 18 issue: 8 year: 2018 article-title: An intelligent system for monitoring skin diseases publication-title: Sensors – volume: 7 issue: 2 year: 2019 article-title: A framework for prediction of household energy consumption using feed forward back propagation neural network publication-title: Technologies – volume: 2 start-page: 107 issue: 2 year: 2011 end-page: 122 article-title: Extreme learning machines: a survey publication-title: Int. J. Mach. Learn. Cybern. – volume: 19 issue: 18 year: 2019 article-title: Improving accuracy of the alpha–beta filter algorithm using an ANN‐based learning mechanism in indoor navigation system publication-title: Sensors – start-page: 333 year: 2017 end-page: 344 – volume: 333 start-page: 2267 issue: 1 year: 2015 end-page: 2273 article-title: Recurrent convolutional neural networks for text classification publication-title: AAAI – start-page: 196 year: 1992 end-page: 199 – volume: 285 start-page: 76 year: 2017 end-page: 93 article-title: Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter publication-title: Geoderma – volume: AES‐23 start-page: 592 issue: 4 year: 1987 end-page: 594 article-title: Alpha‐beta filter with correlated measurement noise publication-title: IEEE Trans. Aero. Electron. Syst. – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 article-title: Human‐level control through deep reinforcement learning publication-title: Nature – volume: 7 start-page: 867 issue: 5 year: 1995 end-page: 888 article-title: Methods for combining experts’ probability assessments publication-title: Neural Comput. – volume: 7 start-page: 60299 year: 2019 end-page: 60309 article-title: Innovative target tracking method combined adaptive $\alpha $‐$\beta $ filter with robust BPNN publication-title: IEEE Access – volume: 29 start-page: 479 issue: 2 year: 2015 end-page: 488 article-title: Attitude estimation using a Neuro‐Fuzzy tuning based adaptive Kalman filter publication-title: J. Intell. Fuzzy Syst. – ident: e_1_2_10_27_1 doi: 10.1016/j.heliyon.2018.e00938 – ident: e_1_2_10_10_1 doi: 10.3390/technologies7020030 – ident: e_1_2_10_12_1 doi: 10.1109/ICACCCT.2014.7019323 – ident: e_1_2_10_22_1 doi: 10.3390/s17061344 – ident: e_1_2_10_4_1 doi: 10.1109/access.2020.3037081 – ident: e_1_2_10_15_1 doi: 10.1016/B978-0-12-811318-9.00018-1 – ident: e_1_2_10_11_1 doi: 10.3390/jsan10020029 – ident: e_1_2_10_20_1 doi: 10.1109/jsen.2018.2806932 – ident: e_1_2_10_21_1 doi: 10.1038/nature14236 – ident: e_1_2_10_5_1 doi: 10.3390/sym11010094 – ident: e_1_2_10_28_1 doi: 10.1609/aaai.v29i1.9513 – ident: e_1_2_10_34_1 doi: 10.3390/s18082552 – ident: e_1_2_10_18_1 doi: 10.1162/neco.1995.7.5.867 – ident: e_1_2_10_6_1 doi: 10.3390/electronics7100222 – ident: e_1_2_10_17_1 doi: 10.3390/app12199429 – ident: e_1_2_10_19_1 doi: 10.3233/ifs‐141183 – ident: e_1_2_10_33_1 doi: 10.1016/j.geoderma.2016.09.027 – ident: e_1_2_10_14_1 doi: 10.1109/jsyst.2020.2990409 – ident: e_1_2_10_13_1 doi: 10.1109/taes.1987.310893 – ident: e_1_2_10_29_1 – ident: e_1_2_10_9_1 – ident: e_1_2_10_31_1 doi: 10.21437/Interspeech.2014-80 – ident: e_1_2_10_2_1 doi: 10.3390/s19183946 – ident: e_1_2_10_24_1 doi: 10.1109/access.2019.2915381 – ident: e_1_2_10_8_1 doi: 10.1007/s13042‐011‐0019‐y – ident: e_1_2_10_26_1 doi: 10.1016/S0169-2070(97)00044-7 – ident: e_1_2_10_30_1 doi: 10.3115/v1/D14-1181 – volume: 12 start-page: 56 issue: 3 year: 2003 ident: e_1_2_10_23_1 article-title: Exploitation of higher order moments increase the tracking aircraft by the extended alpha‐beta filter publication-title: Radioengineering‐Prague – ident: e_1_2_10_7_1 – ident: e_1_2_10_16_1 doi: 10.1007/s12559‐014‐9255‐2 – start-page: 196 volume-title: 92 International Conference on Radar year: 1992 ident: e_1_2_10_25_1 – ident: e_1_2_10_3_1 doi: 10.1109/access.2021.3073876 – ident: e_1_2_10_32_1 doi: 10.1088/1742‐6596/659/1/012022 |
| SSID | ssj0001999537 ssib050169717 ssib050729737 ssib052855658 |
| Score | 2.4824445 |
| Snippet | The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve the... Abstract The alpha–beta filter algorithm has been widely researched for various applications, for example, navigation and target tracking systems. To improve... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1124 |
| SubjectTerms | Accuracy Algorithms alpha beta filter Artificial intelligence artificial neural network Artificial neural networks Back propagation Back propagation networks Classification Deep learning Kalman filters Machine learning Methods Modules navigation Navigation systems Neural networks Performance evaluation Performance prediction prediction accuracy Root-mean-square errors Sensors target tracking problems Temperature sensors Tracking systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iHryIouL6RUAvCsW0TdPkuC6KXhYPK-ytpPnQBV2lWwVv_gf_ob_EmbS7VBC9eGobAk1nppmXZvoeIcexhbRWJjYyGXcRl6WKSi6yiDHjrI-NYc4EsYl8OJTjsbrpSH1hTVhDD9wY7kxmnqscsp6RlkvIp9x5y8pYe5GWkNtx9mW56iymwtcVwD1Zms_5SLk6M5M6QSoFFPrpZKBA1P8NXXYxakgyl-tkrUWHtN-MaoMsuekmqfr0PlRj0OcKt1XQlFQb81Jp8_b5_oGJyNLw0yxeuVpTP8FNcGi7e4LF__0jxfL2Owpgj3pIVwBUsViW4tM3DBIUeS3DIVSFb5Hby4vR4CpqpRIiwxlMWS7XQuUKDI6YyQLGSb0ROsm01CX3qQKTC28zrbmxzIg8Bv9wmcEdvYQVYLpNlqdPU7dDqC8BEnrJvXCO51ZJ5r3QKMjkNBMu7pGTufkK0_KIo5zFQxH2s7nC1qQIpu6Ro0Xf54Y948de5-iFRQ9kvA4NEAdFGwfFX3HQI_tzHxbtazgrUkBDCpXORY-cBr_-MoxicD1Kwtnufwxoj6yiNH1T-rJPluvqxR2QFfNaT2bVYQjXL30A8lI priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58Hbz4YF2cdZQGvawQzKPT6QYvoyh6EQ8K3kKnH-PAOiMxLnjzP_gP_SVWdTKjwrIgnpI0FdJ0VXV96a7-CmAvsRjWqtRGJucu4rJSUcVFHsWxcdYnxsTOhGITxcWFvLlRl3NwOD0L0_JDzBbcyDPCfE0Orqu2CgmCWlSiGTUpcSNwOQ-LSZIVZNMpv3xfYUHskwfSzJSOFyF0SKf8pFwdvL_-KSIF4v5PaPMjZg1B53T1e91dg5UObLJBax3rMOfGP6AesNuQ3MHua9qlIc0wbcxjrc3T6_MLxTXLwhlcenKNZn5Ee-rYNpzUo-b2jlG2_JAhdmQeox_iXsq9ZWSFLSEFI5rMcAlJ5htwfXpydXwWdZUXIsNjnAFdoYUqFOqPIJhFyJR5I3Saa6kr7jOFGhTe5lpzY2MjigTVzWWOX_QSfyizn7AwnozdJjBfIcL0knvhHC-skrH3QlN9J6dj4ZIe_J6Ofmk6WnKqjvGnDNvjXFFrWoaR68HuTPa-JeP4p9QRKXEmQQTaoWFSD8vOH0uZe64KBFNGYscRpnHnbVwl2ousQsjYg_7UBMrOqx_KDMGVosLpogf7Qdn_6UZ5fH6VhrtfXxHegmWqaN9mzPRhoakf3TYsmb_N6KHeCRb-Bo5NANQ priority: 102 providerName: Wiley-Blackwell |
| Title | A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12148 https://www.proquest.com/docview/3091965416 https://doaj.org/article/85f497155c8d486394efd0b1af63b929 |
| Volume | 8 |
| WOSCitedRecordID | wos000888647200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050729737 issn: 2468-2322 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: K7- dateStart: 20170601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: BENPR dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: PIMPY dateStart: 20170601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: WIN dateStart: 20170101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2468-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999537 issn: 2468-2322 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7y6KGXtKEt3SRdBO2lBRM_ZFk6lSRs6B6ymJLS9GRkPTYLye7G6wR6Kf0P_Yf5JZnRepMUSi692JYsLOGRNJ9nxvMBfEgsqrU6tZHJuYu4rFVUc5FHcWyc9YkxsTOBbKIYjeTZmSo7g9uiC6tc7Ylho7YzQzby_QwVmyLSavF5fhURaxR5VzsKjXXYTFLchMkpW0QPNhZEP3lWrLKScrVvJm1KCRWI7ueRHgrp-v_CmI-RalA1xy_-d5AvYasDmexgOSu2Yc1NX0FzwM5DUAebN-SdIYkwbcx1o83P299_SJ9ZFv69pZJrNfMT8qVj3Rg7ac8vGUXJjxliRuZR6yHepZhbRrNvmYiCUXrMcArB5a_h2_Hg9OhL1DEuRIbHuPO5QgtVKJQbQS-LUCnzRug011LX3GcKJSe8zbXmxsZGFAmKmcsce_QSPySzN7AxnU3dW2C-RmTpJffCOV5YJWPvhSZeJ6dj4ZIefFy9_8p06ciJFeOiCm5xrqg2rYKsevD-vu18mYTjn60OSYz3LShxdqiYNeOqW4eVzD1XBYIoI3HgCM-48zauE-1FViNU7MHeSrJVt5oX1YNYe_ApTIwnhlEdDU_TcLXz9LN24Tlx1y9jY_Zgo22u3Tt4Zm7ayaLpw3rKyz5sHg5G5dd-MBX0w-zG48mvAd4phyflDyx9H47uAA6oB_g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXfgSoSwtYAg4gRc2P49gHhEqh6mrLisMi9RYc_2xXgt1tNgX1xjvwHjwUT8KMk7RFQr31wCmJZVnj-LPnSzyeD-B5YtGtVamNTM5dxGWlooqLPIpj46xPjImdCWITxXgsDw_VxzX41Z-FobDKfk0MC7VdGPpHvp2hY1MkWi3eLI8jUo2i3dVeQqOFxcidfsdPttXr4Tsc3xdpuvd-srsfdaoCkeExzm5XaKEKhbYRvbBIBzJvhE5zLXXFfabQOuFtrjU3NjaiSLArXOZoupf4sZRhu9fgOs9kQfNqVETn_3SQbeVZ0WdB5WrbzJqUEjiQvNAFvxfkAf7itBeZcXBte3f-t5dyF253JJrttKi_B2tufh_qHXYUglbYsqbdJ0Ic08ac1Nqc_v7xk_y1ZeFsMT25RjM_o1gBLJtip5qjr4xOAUwZcmLm0asjn6eYYkazq020wSj9Z7iE4PkH8OlKuvkQ1ueLudsA5itkzl5yL5zjhVUy9l5o0q1yOhYuGcDLfrxL06VbJ9WPL2XY9ueKStMyYGMAz87qLtskI_-s9ZZgc1aDEoOHgkU9Lbt1ppS556pAkmgkGo70kztv4yrRXmQVUuEBbPVIKrvValWew2gArwIQLzGj3B1O0nD36PK2nsLN_cmHg_JgOB5twq0U2WEbB7QF60194h7DDfOtma3qJ2EWMfh81Qj9A_p7XbA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC50FfHiAxVHV23Qi0Iwj0qn-7iuDi7KMIcV9tZ0-jE7oDNDNit48z_4D_0lVnUysy6IIJ6SNBXSpKq6vu6u_grgReEprLWlz1yNIUPV6qxFWWd57oKPhXN5cKnYRDObqZMTPR9zc_gszMAPsVtwY89I4zU7eNj4OEw4kUky3bIvmRwB1VW4hjUNskzsjPOLJRYCP3VizSz5fBFhh3JLUIr69cXrl0JSYu6_BDd_B60p6kxv_2d_78CtEW6Kg8E-7sKVsLoH3YE4TekdYtPxPg3rRljnzjvrvv38_oMjmxfpFC4_hd6KuORddWpbrLtlf_pFcL78QhB6FJHiHyFfzr4VbIcDJYVgosx0SWnm9-HT9N3x4ftsrL2QOcxpDAyNlbrRpEEGYZ5AUxWdtGVtlW0xVpp0KKOvrUXncyebghSOqqYvRkVTyuoB7K3Wq_AQRGwJY0aFUYaAjdcqj1FarvAUbC5DMYGX299v3EhMzvUxPpu0QY6aW0uT_twEnu9kNwMdxx-l3rAWdxJMoZ0a1t3CjB5pVB1RNwSnnKKOE1DDEH3eFjbKqiXQOIH9rQ2Y0a_PTEXwSnPpdDmBV0nbf-mGOTw6LtPdo38RfgY35m-n5uPR7MNjuMnl7Yf0mX3Y67vz8ASuu6_98qx7mqz9F1zUBDo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+higher+prediction+accuracy%E2%80%93based+alpha%E2%80%93beta+filter+algorithm+using+the+feedforward+artificial+neural+network&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Khan%2C+Junaid&rft.au=Lee%2C+Eunkyu&rft.au=Kim%2C+Kyungsup&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=8&rft.issue=4&rft.spage=1124&rft.epage=1139&rft_id=info:doi/10.1049%2Fcit2.12148 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |