One-dimensional cutting stock with a limited number of open stacks: bounds and solutions from a new integer linear programming model

We address a one‐dimensional cutting stock problem where, in addition to trim‐loss minimization, cutting patterns must be sequenced so that no more than s different part types are in production at any time. We propose a new integer linear programming formulation whose constraints grow quadratically...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International transactions in operational research Ročník 23; číslo 1-2; s. 47 - 63
Hlavní autori: Arbib, Claudio, Marinelli, Fabrizio, Ventura, Paolo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.01.2016
Predmet:
ISSN:0969-6016, 1475-3995
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We address a one‐dimensional cutting stock problem where, in addition to trim‐loss minimization, cutting patterns must be sequenced so that no more than s different part types are in production at any time. We propose a new integer linear programming formulation whose constraints grow quadratically with the number of distinct part types and whose linear relaxation can be solved by a standard column generation procedure. The formulation allowed us to solve problems with 20 part types for which an optimal solution was unknown.
Bibliografia:ark:/67375/WNG-9SQMNDVS-Z
ArticleID:ITOR12134
istex:9F0C2515ACDFE95E8437757999EC1DA36428E6D4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0969-6016
1475-3995
DOI:10.1111/itor.12134