Nonparametric Models for Uncertainty Visualization

An uncertain (scalar, vector, tensor) field is usually perceived as a discrete random field with a priori unknown probability distributions. To compute derived probabilities, e.g. for the occurrence of certain features, an appropriate probabilistic model has to be selected. The majority of previous...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 32; číslo 3pt2; s. 131 - 140
Hlavní autori: Pöthkow, Kai, Hege, Hans-Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.06.2013
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An uncertain (scalar, vector, tensor) field is usually perceived as a discrete random field with a priori unknown probability distributions. To compute derived probabilities, e.g. for the occurrence of certain features, an appropriate probabilistic model has to be selected. The majority of previous approaches in uncertainty visualization were restricted to Gaussian fields. In this paper we extend these approaches to nonparametric models, which are much more flexible, as they can represent various types of distributions, including multimodal and skewed ones. We present three examples of nonparametric representations: (a) empirical distributions, (b) histograms and (c) kernel density estimates (KDE). While the first is a direct representation of the ensemble data, the latter two use reconstructed probability density functions of continuous random variables. For KDE we propose an approach to compute valid consistent marginal distributions and to efficiently capture correlations using a principal component transformation. Furthermore, we use automatic bandwidth selection, obtaining a model for probabilistic local feature extraction. The methods are demonstrated by computing probabilities of level crossings, critical points and vortex cores in simulated biofluid dynamics and climate data.
Bibliografia:istex:A625F47DC0CA0CFC98A3C262A39E2B8A81A6329A
ark:/67375/WNG-TD4KP2ZL-F
ArticleID:CGF12100
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12100