Hybrid quantum algorithms for flow problems

For quantum computing (QC) to emerge as a practically indispensable computational tool, there is a need for quantum protocols with end-to-end practical applications-in this instance, fluid dynamics. We debut here a high-performance quantum simulator which we term QFlowS (Quantum Flow Simulator), des...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 120; číslo 49; s. e2311014120
Hlavní autoři: Bharadwaj, Sachin S, Sreenivasan, Katepalli R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 05.12.2023
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For quantum computing (QC) to emerge as a practically indispensable computational tool, there is a need for quantum protocols with end-to-end practical applications-in this instance, fluid dynamics. We debut here a high-performance quantum simulator which we term QFlowS (Quantum Flow Simulator), designed for fluid flow simulations using QC. Solving nonlinear flows by QC generally proceeds by solving an equivalent infinite dimensional linear system as a result of linear embedding. Thus, we first choose to simulate two well-known flows using QFlowS and demonstrate a previously unseen, full gate-level implementation of a hybrid and high precision Quantum Linear Systems Algorithms (QLSA) for simulating such flows at low Reynolds numbers. The utility of this simulator is demonstrated by extracting error estimates and power law scaling that relates [Formula: see text] (a parameter crucial to Hamiltonian simulations) to the condition number [Formula: see text] of the simulation matrix and allows the prediction of an optimal scaling parameter for accurate eigenvalue estimation. Further, we include two speedup preserving algorithms for a) the functional form or sparse quantum state preparation and b) in situ quantum postprocessing tool for computing nonlinear functions of the velocity field. We choose the viscous dissipation rate as an example, for which the end-to-end complexity is shown to be [Formula: see text], where [Formula: see text] is the size of the linear system of equations, [Formula: see text] is the solution error, and [Formula: see text] is the error in postprocessing. This work suggests a path toward quantum simulation of fluid flows and highlights the special considerations needed at the gate-level implementation of QC.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.2311014120