High-order numerical scheme for compressible multi-component real gas flows using an extension of the Roe approximate Riemann solver and specific Monotonicity-Preserving constraints

•Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic mo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 450; p. 110821
Main Authors: Lecointre, Luc, Vicquelin, Ronan, Kudriakov, Sergey, Studer, Etienne, Tenaud, Christian
Format: Journal Article
Language:English
Published: Cambridge Elsevier Inc 01.02.2022
Elsevier Science Ltd
Elsevier
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic model. The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state. This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem. To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties.
AbstractList The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state.This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem.To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties.
•Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic model. The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state. This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem. To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties.
ArticleNumber 110821
Author Kudriakov, Sergey
Studer, Etienne
Lecointre, Luc
Vicquelin, Ronan
Tenaud, Christian
Author_xml – sequence: 1
  givenname: Luc
  orcidid: 0000-0003-3309-8836
  surname: Lecointre
  fullname: Lecointre, Luc
  email: luc.lecointre@centraliens.net
  organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France
– sequence: 2
  givenname: Ronan
  surname: Vicquelin
  fullname: Vicquelin, Ronan
  organization: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France
– sequence: 3
  givenname: Sergey
  surname: Kudriakov
  fullname: Kudriakov, Sergey
  organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France
– sequence: 4
  givenname: Etienne
  surname: Studer
  fullname: Studer, Etienne
  organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France
– sequence: 5
  givenname: Christian
  orcidid: 0000-0002-2024-485X
  surname: Tenaud
  fullname: Tenaud, Christian
  organization: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France
BackLink https://hal.science/hal-03451235$$DView record in HAL
BookMark eNp9Uctu1DAUjVCRmBY-gJ0lViwy2M5brKoKGKRBINS9dWNfzzhK7GA70_bD-D8cBbFg0ZXl6_O4Puc6u7LOYpa9ZXTPKKs_DPtBzntOOdszRlvOXmQ7Rjua84bVV9mOppe86zr2KrsOYaCUtlXZ7rLfB3M6584r9MQuE3ojYSRBnnFCop0n0k2zxxBMPyKZljGafB0ldxuJxwQ-QSB6dA-BLMHYEwFL8DGiDcZZ4jSJZyQ_HRKYZ-8ezQQx3Q1OYC0JbrwkZ7CKhBml0UaSb8666KyRJj7lP5I3-suqK50N0YOxMbzOXmoYA775e95k958_3d8d8uP3L1_vbo-5LCmPudK80ryspWw7CtAVwLHnpWwaqFldAijJ6qbVHe0VyFo3hVKy71XVqoJzXdxk7zfZM4xi9ml1_yQcGHG4PYp1RouyYryoLixh323Y9MlfC4YoBrd4m7YTvC5a2nSpp4RiG0p6F4JH_U-WUbEWKQaRihRrkWIrMnGa_zgpGYgp3TWN8Vnmx42JKaOLQS-CNGglKuNRRqGceYb9B4fMvxs
CitedBy_id crossref_primary_10_3390_computation12050103
crossref_primary_10_1016_j_cnsns_2023_107602
crossref_primary_10_1016_j_ijrefrig_2024_05_020
Cites_doi 10.1080/10618562.2020.1819535
10.1016/j.jcp.2019.03.007
10.2514/3.10269
10.1016/0021-9991(81)90128-5
10.1006/jcph.1997.5745
10.1016/j.compfluid.2008.06.008
10.1016/0021-9991(90)90145-Q
10.1006/jcph.1997.5838
10.1017/S0022112087002003
10.1006/jcph.1996.0085
10.1016/0021-9991(90)90222-M
10.2514/3.12016
10.1016/j.jcp.2016.10.067
10.1016/0021-9991(92)90046-2
10.1090/S0025-5718-01-01391-6
10.1016/S1570-8659(00)07004-6
10.1016/j.jcp.2021.110135
10.1016/j.compfluid.2019.104289
10.1007/BF00281235
10.1016/j.compfluid.2015.07.025
10.1016/0045-7930(91)90032-D
10.1002/cpa.3160481201
10.1007/s42757-019-0021-2
10.1016/0021-9991(88)90084-8
10.1016/0021-9991(91)90253-H
10.1016/j.jcp.2003.08.023
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier Science Ltd. Feb 1, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Feb 1, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.jcp.2021.110821
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
ExternalDocumentID oai:HAL:hal-03451235v1
10_1016_j_jcp_2021_110821
S0021999121007166
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c402t-df25f246cc890aa93a2eb24c77a6164aadc1678f90bdac6f73ddcbbd58d322f3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762859500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sat Nov 29 15:07:10 EST 2025
Sun Nov 30 04:30:05 EST 2025
Sat Nov 29 03:10:33 EST 2025
Tue Nov 18 20:00:26 EST 2025
Fri Feb 23 02:41:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-component real gas flow
Monotonicity-Preserving constraints
Roe approximate Riemann solver
High-order numerical scheme
Multi-component Real Gas Flow
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-df25f246cc890aa93a2eb24c77a6164aadc1678f90bdac6f73ddcbbd58d322f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2024-485X
0000-0003-3309-8836
0000-0002-5656-8522
0000-0002-2055-5244
OpenAccessLink https://hal.science/hal-03451235
PQID 2638079101
PQPubID 2047462
ParticipantIDs hal_primary_oai_HAL_hal_03451235v1
proquest_journals_2638079101
crossref_primary_10_1016_j_jcp_2021_110821
crossref_citationtrail_10_1016_j_jcp_2021_110821
elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110821
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Ben Hassan Saïdi, Fournier, Tenaud (br0220) 2020; 34
Daru, Tenaud (br0180) 2009; 38
Tenaud, Roussel, Bentaleb (br0250) 2015; 120
Daru, Tenaud (br0020) 2004; 193
Anderson (br0040) 1989
Suresh, Huynh (br0190) 1997; 136
Mottura, Vigevano, Zaccanti (br0140) 1997; 138
Kundu, De (br0310) 2019; 193
Abgrall (br0170) 1996; 125
Leveque (br0210) 1992
Cox, Cinnella (br0110) 1994; 32
Cohen, Kaber, Müller, Postel (br0030) 2003; 72
Arabi, Trépanier, Camarero (br0120) 2017; 329
Denner, van Wachem (br0300) 2019; 1
Poinsot, Lele (br0320) 1992; 101
Arabi, Trépanier, Camarero (br0150) 2019; 388
Cohen (br0240) 2000
Poinsot, Veynante (br0050) 2005; 28
Strang (br0200) 1963; 12
McBride, Zehe, Gordon (br0260) 2002
Abgrall (br0070) 1991; 19
Liou, Leer, Shuen (br0100) 1990; 87
Montagne, Yee, Vinokur (br0010) 1989; 27
Spekreijse, Hagmeijer (br0130) 1990
Larrouturou (br0160) 1991; 95
Vinokur, Montagné (br0090) 1990; 89
Beccantini (br0270) 2000
Roe (br0060) 1981; 43
Coquel, Marmignon, Rai, Renac (br0280) 2021; 431
Haas, Sturtevant (br0290) 1987; 181
Glaister (br0080) 1988; 74
Harten (br0230) 1995; 48
Cox (10.1016/j.jcp.2021.110821_br0110) 1994; 32
Ben Hassan Saïdi (10.1016/j.jcp.2021.110821_br0220) 2020; 34
Arabi (10.1016/j.jcp.2021.110821_br0150) 2019; 388
Cohen (10.1016/j.jcp.2021.110821_br0030) 2003; 72
Coquel (10.1016/j.jcp.2021.110821_br0280) 2021; 431
Roe (10.1016/j.jcp.2021.110821_br0060) 1981; 43
Harten (10.1016/j.jcp.2021.110821_br0230) 1995; 48
Kundu (10.1016/j.jcp.2021.110821_br0310) 2019; 193
Montagne (10.1016/j.jcp.2021.110821_br0010) 1989; 27
McBride (10.1016/j.jcp.2021.110821_br0260) 2002
Arabi (10.1016/j.jcp.2021.110821_br0120) 2017; 329
Glaister (10.1016/j.jcp.2021.110821_br0080) 1988; 74
Anderson (10.1016/j.jcp.2021.110821_br0040) 1989
Beccantini (10.1016/j.jcp.2021.110821_br0270) 2000
Poinsot (10.1016/j.jcp.2021.110821_br0320) 1992; 101
Tenaud (10.1016/j.jcp.2021.110821_br0250) 2015; 120
Vinokur (10.1016/j.jcp.2021.110821_br0090) 1990; 89
Poinsot (10.1016/j.jcp.2021.110821_br0050) 2005; 28
Haas (10.1016/j.jcp.2021.110821_br0290) 1987; 181
Abgrall (10.1016/j.jcp.2021.110821_br0170) 1996; 125
Liou (10.1016/j.jcp.2021.110821_br0100) 1990; 87
Strang (10.1016/j.jcp.2021.110821_br0200) 1963; 12
Daru (10.1016/j.jcp.2021.110821_br0180) 2009; 38
Spekreijse (10.1016/j.jcp.2021.110821_br0130) 1990
Cohen (10.1016/j.jcp.2021.110821_br0240) 2000
Denner (10.1016/j.jcp.2021.110821_br0300) 2019; 1
Abgrall (10.1016/j.jcp.2021.110821_br0070) 1991; 19
Larrouturou (10.1016/j.jcp.2021.110821_br0160) 1991; 95
Mottura (10.1016/j.jcp.2021.110821_br0140) 1997; 138
Leveque (10.1016/j.jcp.2021.110821_br0210) 1992
Daru (10.1016/j.jcp.2021.110821_br0020) 2004; 193
Suresh (10.1016/j.jcp.2021.110821_br0190) 1997; 136
References_xml – volume: 32
  start-page: 519
  year: 1994
  end-page: 527
  ident: br0110
  article-title: General solution procedure for flows in local chemical equilibrium
  publication-title: AIAA J.
– volume: 87
  start-page: 1
  year: 1990
  end-page: 24
  ident: br0100
  article-title: Splitting of inviscid fluxes for real gases
  publication-title: J. Comput. Phys.
– start-page: 522
  year: 1990
  end-page: 532
  ident: br0130
  article-title: Derivation of a roe scheme for an n-species chemically reacting gas in thermal equilibrium
  publication-title: Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics
– volume: 28
  year: 2005
  ident: br0050
  article-title: Theoretical and numerical combustion
  publication-title: Prog. Energy Combust. Sci.
– year: 2000
  ident: br0240
  article-title: Wavelet methods in numerical analysis
  publication-title: Handbook of Numerical Analysis, vol. 7
– volume: 74
  start-page: 382
  year: 1988
  end-page: 408
  ident: br0080
  article-title: An approximate linearised Riemann solver for the Euler equations for real gases
  publication-title: J. Comput. Phys.
– volume: 72
  start-page: 183
  year: 2003
  end-page: 225
  ident: br0030
  article-title: Fully adaptive multiresolution finite volume schemes for conservation laws
  publication-title: Math. Comput.
– year: 2002
  ident: br0260
  article-title: NASA glenn coefficients for calculating thermodynamic properties of individual species
– volume: 101
  start-page: 104
  year: 1992
  end-page: 129
  ident: br0320
  article-title: Boundary conditions for direct simulations of compressible viscous flows
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 392
  year: 1963
  end-page: 402
  ident: br0200
  article-title: Accurate partial difference methods. I. Linear Cauchy problems
  publication-title: Arch. Ration. Mech. Anal.
– volume: 48
  start-page: 1305
  year: 1995
  end-page: 1342
  ident: br0230
  article-title: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws
  publication-title: Commun. Pure Appl. Math.
– volume: 43
  start-page: 357
  year: 1981
  end-page: 372
  ident: br0060
  article-title: Approximate Riemann solvers, parameter vectors, and difference schemes
  publication-title: J. Comput. Phys.
– year: 1992
  ident: br0210
  article-title: Numerical Methods for Conservation Laws
– volume: 193
  start-page: 563
  year: 2004
  end-page: 594
  ident: br0020
  article-title: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations
  publication-title: J. Comput. Phys.
– volume: 138
  start-page: 354
  year: 1997
  end-page: 399
  ident: br0140
  article-title: An evaluation of roe's scheme generalizations for equilibrium real gas flows
  publication-title: J. Comput. Phys.
– volume: 329
  start-page: 16
  year: 2017
  end-page: 28
  ident: br0120
  article-title: A simple extension of roe's scheme for real gases
  publication-title: J. Comput. Phys.
– volume: 388
  start-page: 178
  year: 2019
  end-page: 194
  ident: br0150
  article-title: A simple extension of roe's scheme for multi-component real gas flows
  publication-title: J. Comput. Phys.
– volume: 120
  start-page: 111
  year: 2015
  end-page: 125
  ident: br0250
  article-title: Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme
  publication-title: Comput. Fluids
– year: 2000
  ident: br0270
  article-title: Upwind splitting schemes for ideal gases mixtures with temperature-dependent specific heat capacities
– volume: 1
  start-page: 271
  year: 2019
  end-page: 285
  ident: br0300
  article-title: Numerical modelling of shock-bubble interactions using a pressure-based algorithm without Riemann solvers
  publication-title: Exp. Comput. Multiph. Flow
– volume: 89
  start-page: 276
  year: 1990
  end-page: 300
  ident: br0090
  article-title: Generalized flux-vector splitting and roe average for an equilibrium real gas
  publication-title: J. Comput. Phys.
– volume: 125
  start-page: 150
  year: 1996
  end-page: 160
  ident: br0170
  article-title: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach
  publication-title: J. Comput. Phys.
– volume: 136
  start-page: 83
  year: 1997
  end-page: 99
  ident: br0190
  article-title: Accurate monotonicity-preserving schemes with Runge-Kutta time stepping
  publication-title: J. Comput. Phys.
– volume: 19
  start-page: 171
  year: 1991
  end-page: 182
  ident: br0070
  article-title: An extension of roe's upwind scheme to algebraic equilibrium real gas models
  publication-title: Comput. Fluids
– volume: 193
  year: 2019
  ident: br0310
  article-title: High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble
  publication-title: Comput. Fluids
– volume: 95
  start-page: 59
  year: 1991
  end-page: 84
  ident: br0160
  article-title: How to preserve the mass fractions positivity when computing compressible multi-component flows
  publication-title: J. Comput. Phys.
– volume: 34
  start-page: 671
  year: 2020
  end-page: 704
  ident: br0220
  article-title: On the behavior of high order one-step monotonicity-preserving scheme for direct numerical simulation of shocked turbulent flows
  publication-title: Int. J. Comput. Fluid Dyn.
– year: 1989
  ident: br0040
  article-title: Hypersonics and High Temperature Gas Dynamics
– volume: 27
  start-page: 1332
  year: 1989
  end-page: 1346
  ident: br0010
  article-title: Comparative study of high-resolution shock-capturing schemes for a real gas
  publication-title: AIAA J.
– volume: 38
  start-page: 664
  year: 2009
  end-page: 676
  ident: br0180
  article-title: Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme
  publication-title: Comput. Fluids
– volume: 431
  year: 2021
  ident: br0280
  article-title: An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model
  publication-title: J. Comput. Phys.
– volume: 181
  start-page: 41
  year: 1987
  end-page: 76
  ident: br0290
  article-title: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
  publication-title: J. Fluid Mech.
– volume: 34
  start-page: 671
  issue: 9
  year: 2020
  ident: 10.1016/j.jcp.2021.110821_br0220
  article-title: On the behavior of high order one-step monotonicity-preserving scheme for direct numerical simulation of shocked turbulent flows
  publication-title: Int. J. Comput. Fluid Dyn.
  doi: 10.1080/10618562.2020.1819535
– volume: 388
  start-page: 178
  year: 2019
  ident: 10.1016/j.jcp.2021.110821_br0150
  article-title: A simple extension of roe's scheme for multi-component real gas flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.03.007
– volume: 27
  start-page: 1332
  issue: 10
  year: 1989
  ident: 10.1016/j.jcp.2021.110821_br0010
  article-title: Comparative study of high-resolution shock-capturing schemes for a real gas
  publication-title: AIAA J.
  doi: 10.2514/3.10269
– volume: 43
  start-page: 357
  issue: 2
  year: 1981
  ident: 10.1016/j.jcp.2021.110821_br0060
  article-title: Approximate Riemann solvers, parameter vectors, and difference schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90128-5
– volume: 136
  start-page: 83
  year: 1997
  ident: 10.1016/j.jcp.2021.110821_br0190
  article-title: Accurate monotonicity-preserving schemes with Runge-Kutta time stepping
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5745
– volume: 38
  start-page: 664
  year: 2009
  ident: 10.1016/j.jcp.2021.110821_br0180
  article-title: Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.06.008
– volume: 89
  start-page: 276
  issue: 2
  year: 1990
  ident: 10.1016/j.jcp.2021.110821_br0090
  article-title: Generalized flux-vector splitting and roe average for an equilibrium real gas
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90145-Q
– volume: 138
  start-page: 354
  issue: 2
  year: 1997
  ident: 10.1016/j.jcp.2021.110821_br0140
  article-title: An evaluation of roe's scheme generalizations for equilibrium real gas flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5838
– volume: 181
  start-page: 41
  year: 1987
  ident: 10.1016/j.jcp.2021.110821_br0290
  article-title: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087002003
– volume: 125
  start-page: 150
  issue: 1
  year: 1996
  ident: 10.1016/j.jcp.2021.110821_br0170
  article-title: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0085
– volume: 87
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.jcp.2021.110821_br0100
  article-title: Splitting of inviscid fluxes for real gases
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90222-M
– volume: 32
  start-page: 519
  issue: 3
  year: 1994
  ident: 10.1016/j.jcp.2021.110821_br0110
  article-title: General solution procedure for flows in local chemical equilibrium
  publication-title: AIAA J.
  doi: 10.2514/3.12016
– volume: 329
  start-page: 16
  year: 2017
  ident: 10.1016/j.jcp.2021.110821_br0120
  article-title: A simple extension of roe's scheme for real gases
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.067
– year: 1989
  ident: 10.1016/j.jcp.2021.110821_br0040
– volume: 101
  start-page: 104
  year: 1992
  ident: 10.1016/j.jcp.2021.110821_br0320
  article-title: Boundary conditions for direct simulations of compressible viscous flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90046-2
– volume: 72
  start-page: 183
  year: 2003
  ident: 10.1016/j.jcp.2021.110821_br0030
  article-title: Fully adaptive multiresolution finite volume schemes for conservation laws
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-01-01391-6
– year: 2002
  ident: 10.1016/j.jcp.2021.110821_br0260
– year: 2000
  ident: 10.1016/j.jcp.2021.110821_br0240
  article-title: Wavelet methods in numerical analysis
  doi: 10.1016/S1570-8659(00)07004-6
– volume: 431
  year: 2021
  ident: 10.1016/j.jcp.2021.110821_br0280
  article-title: An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110135
– volume: 193
  year: 2019
  ident: 10.1016/j.jcp.2021.110821_br0310
  article-title: High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.104289
– volume: 12
  start-page: 392
  year: 1963
  ident: 10.1016/j.jcp.2021.110821_br0200
  article-title: Accurate partial difference methods. I. Linear Cauchy problems
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00281235
– year: 1992
  ident: 10.1016/j.jcp.2021.110821_br0210
– year: 2000
  ident: 10.1016/j.jcp.2021.110821_br0270
– volume: 120
  start-page: 111
  year: 2015
  ident: 10.1016/j.jcp.2021.110821_br0250
  article-title: Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.07.025
– volume: 19
  start-page: 171
  issue: 2
  year: 1991
  ident: 10.1016/j.jcp.2021.110821_br0070
  article-title: An extension of roe's upwind scheme to algebraic equilibrium real gas models
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(91)90032-D
– volume: 48
  start-page: 1305
  issue: 12
  year: 1995
  ident: 10.1016/j.jcp.2021.110821_br0230
  article-title: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160481201
– volume: 1
  start-page: 271
  issue: 4
  year: 2019
  ident: 10.1016/j.jcp.2021.110821_br0300
  article-title: Numerical modelling of shock-bubble interactions using a pressure-based algorithm without Riemann solvers
  publication-title: Exp. Comput. Multiph. Flow
  doi: 10.1007/s42757-019-0021-2
– volume: 74
  start-page: 382
  issue: 2
  year: 1988
  ident: 10.1016/j.jcp.2021.110821_br0080
  article-title: An approximate linearised Riemann solver for the Euler equations for real gases
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90084-8
– start-page: 522
  year: 1990
  ident: 10.1016/j.jcp.2021.110821_br0130
  article-title: Derivation of a roe scheme for an n-species chemically reacting gas in thermal equilibrium
– volume: 95
  start-page: 59
  issue: 1
  year: 1991
  ident: 10.1016/j.jcp.2021.110821_br0160
  article-title: How to preserve the mass fractions positivity when computing compressible multi-component flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90253-H
– volume: 193
  start-page: 563
  year: 2004
  ident: 10.1016/j.jcp.2021.110821_br0020
  article-title: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.08.023
– volume: 28
  year: 2005
  ident: 10.1016/j.jcp.2021.110821_br0050
  article-title: Theoretical and numerical combustion
  publication-title: Prog. Energy Combust. Sci.
SSID ssj0008548
Score 2.3963122
Snippet •Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving...
The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110821
SubjectTerms Approximation
Compressibility
Computational physics
Discontinuity
Flow distribution
Fluid mechanics
Gas flow
Gas mixtures
Gases
High temperature
High-order numerical scheme
Ideal gas
Local thermodynamic equilibrium
Mechanics
Monotonicity-Preserving constraints
Multi-component real gas flow
Numerical analysis
Numerical methods
Physics
Real gases
Refrigerants
Riemann solver
Roe approximate Riemann solver
Shock waves
Sound
Thermodynamic properties
Thermodynamics
Title High-order numerical scheme for compressible multi-component real gas flows using an extension of the Roe approximate Riemann solver and specific Monotonicity-Preserving constraints
URI https://dx.doi.org/10.1016/j.jcp.2021.110821
https://www.proquest.com/docview/2638079101
https://hal.science/hal-03451235
Volume 450
WOSCitedRecordID wos000762859500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKBxIvfAwQhYEsxBNVpsRJ8_FYwaYOqqoaFepb5NjJ2tIlU9OW_jH-Fr-Be20n7QqbxgMvUevWVtJ7at97fe4xIe8jFJf0_dCSCXMtT0rHSkKWQtTKJOepdG2pdGb7wWAQjsfRsNH4VdXCrOdBnoebTXT1X00NbWBsLJ39B3PXg0IDvAajwxXMDtc7GR6ZG5ZS1GznK70fg3WPk_RS63sjiVyRX7FmSvEJLWwqcmQFLFBn-IKX7Wxe_Cjbq1LXMLZVrrw0ziX6qudFqvXIN1PweeH9NL3ked6GZ4NfTG1JYBEnEpFw3iiWKMELHr-FnA-cn1StL8rX8qlRk_qLjyzUmRNVvlJnYeogoA-R8xRlOVVuYSWq9m9TAYudOYj-HHpuiQYrCQb4XqxVzhfrTusNBeRTmtKfpeLA7aZDIJK2r1FLqjqd3TkfSSiRPhPsONXTvB3ZFgt0lecfi4jOZ8yOZwIFTZmjSiWYs10xK5ZAr_s1Hn46jftngy_XP91hOfa6fbhO-NyyXa-DpclriNYPWNCJwiY56J6djD_XvkPY8bTvYO652odXjMS9-7nJk7o3QUrvnmeh3KXRE_LI2JB2NT6fkkaaH5LHJuahZkUpD8mDoTbqM_JzC1xaA5dq4FIALt0FLt0DLkXgUgAuVcClCriU57QGLi0yCsClAFy6A1xqgEs1cKGLpBVw6Q3ApTvAfU5Gpyejjz3LHCpiCc9mS0tmrJMxzxcijGzOI5ezNGGeCALuO77HuRQOOHBZZCeSCz8LXClFkshOKGHty9wXpJnDg70klPlJ4EiHO9wNvdQRoScEfMOD4WxXRm6L2JV9YmEE9_He5nHFrJzFYNIYTRprk7bIh7rLlVabue3LXmX02LjL2g2OAci3dXsHAKmHR3l5gGiMbVuAtshRhZ_YzG1lzHw8nQLiC-fVXcZ4TR5u_6BHpLlcrNI35L5YL6fl4q1B_m-jXwCc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+numerical+scheme+for+compressible+multi-component+real+gas+flows+using+an+extension+of+the+Roe+approximate+Riemann+solver+and+specific+Monotonicity-Preserving+constraints&rft.jtitle=Journal+of+computational+physics&rft.au=Lecointre%2C+Luc&rft.au=Vicquelin%2C+Ronan&rft.au=Kudriakov%2C+Sergey&rft.au=Studer%2C+Etienne&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016%2Fj.jcp.2021.110821&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03451235v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon