High-order numerical scheme for compressible multi-component real gas flows using an extension of the Roe approximate Riemann solver and specific Monotonicity-Preserving constraints
•Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic mo...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 450; s. 110821 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Elsevier Inc
01.02.2022
Elsevier Science Ltd Elsevier |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic model.
The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state.
This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem.
To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties. |
|---|---|
| AbstractList | The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state.This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem.To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties. •Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving scheme.•Additional OSMP scheme on a combination of characteristic variables.•Accurate R22 bubble/shock interaction test case with detailed thermodynamic model. The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact with multi-component real gas mixtures, assuming a local thermodynamic equilibrium. We first propose a generalization of the Roe solver for distinct species with non-ideal thermodynamic properties that relies on the original method proposed by Vinokur & Montagné [1]. This method uses an approximation of compressibility factors to estimate a coherent value of the speed of sound at the Roe averaged state. This Roe averaged state is introduced in the One-Step Monotonicity-Preserving (OSMP) scheme, originally developed by Daru and Tenaud [2], to obtain an extension to the high-order with Lax-Wendroff procedure adequate for dealing with non-ideal gas flows. To avoid thermodynamic inconsistencies in the evolution of the Roe average state over a large stencil, we propose to reformulate the discrete total energy flux of the initial solver. This new formulation uses a combination of Riemann invariants related to the species mass fractions and avoids the influence of the independent values of the compressibility factors in the total energy flux computation. An additional M-P constraint on this new combination allows dealing with discontinuities. Based on the averaged speed of sound estimated by our proposed extension of the Vinokur & Montagné method, we demonstrate that this new formulation is equivalent to selecting a new combination of compressibility factors that completely fulfill the jump relationships of the Riemann problem. To properly capture discontinuities while optimizing the number of numerical cells, the new high-order OSMP scheme is combined with an Adaptive Multiresolution [3] procedure to automatically refine grid in regions where steep gradients occur and coarsen grid elsewhere. The order of the numerical method is evaluated on the convection of density and mass fraction waves. Its capability of capturing discontinuities is validated on a 1-D shock tube problem with a mixture of Nitrogen, Oxygen and dense refrigerant R22 gases. We show that smooth solutions, as well as discontinuities, are recovered with high accuracy. The 2-D interaction between a shock wave in Air with a cylindrical bubble initially filled with dense refrigerant R22 gas is also considered. Present results compare very well with both a recent fully resolved numerical solution of ideal gases and experimental results obtained with real gases. Compared to ideal gas solutions corresponding to calorically perfect gas, drastic changes are recorded on the predicted temperature and the bubble flow patterns that fully justify the use of relevant thermodynamics and the proposed numerical method to account for real gas properties. |
| ArticleNumber | 110821 |
| Author | Kudriakov, Sergey Studer, Etienne Lecointre, Luc Vicquelin, Ronan Tenaud, Christian |
| Author_xml | – sequence: 1 givenname: Luc orcidid: 0000-0003-3309-8836 surname: Lecointre fullname: Lecointre, Luc email: luc.lecointre@centraliens.net organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France – sequence: 2 givenname: Ronan surname: Vicquelin fullname: Vicquelin, Ronan organization: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France – sequence: 3 givenname: Sergey surname: Kudriakov fullname: Kudriakov, Sergey organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France – sequence: 4 givenname: Etienne surname: Studer fullname: Studer, Etienne organization: Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191, Gif-sur-Yvette, France – sequence: 5 givenname: Christian orcidid: 0000-0002-2024-485X surname: Tenaud fullname: Tenaud, Christian organization: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France |
| BackLink | https://hal.science/hal-03451235$$DView record in HAL |
| BookMark | eNp9Uctu1DAUjVCRmBY-gJ0lViwy2M5brKoKGKRBINS9dWNfzzhK7GA70_bD-D8cBbFg0ZXl6_O4Puc6u7LOYpa9ZXTPKKs_DPtBzntOOdszRlvOXmQ7Rjua84bVV9mOppe86zr2KrsOYaCUtlXZ7rLfB3M6584r9MQuE3ojYSRBnnFCop0n0k2zxxBMPyKZljGafB0ldxuJxwQ-QSB6dA-BLMHYEwFL8DGiDcZZ4jSJZyQ_HRKYZ-8ezQQx3Q1OYC0JbrwkZ7CKhBml0UaSb8666KyRJj7lP5I3-suqK50N0YOxMbzOXmoYA775e95k958_3d8d8uP3L1_vbo-5LCmPudK80ryspWw7CtAVwLHnpWwaqFldAijJ6qbVHe0VyFo3hVKy71XVqoJzXdxk7zfZM4xi9ml1_yQcGHG4PYp1RouyYryoLixh323Y9MlfC4YoBrd4m7YTvC5a2nSpp4RiG0p6F4JH_U-WUbEWKQaRihRrkWIrMnGa_zgpGYgp3TWN8Vnmx42JKaOLQS-CNGglKuNRRqGceYb9B4fMvxs |
| CitedBy_id | crossref_primary_10_3390_computation12050103 crossref_primary_10_1016_j_cnsns_2023_107602 crossref_primary_10_1016_j_ijrefrig_2024_05_020 |
| Cites_doi | 10.1080/10618562.2020.1819535 10.1016/j.jcp.2019.03.007 10.2514/3.10269 10.1016/0021-9991(81)90128-5 10.1006/jcph.1997.5745 10.1016/j.compfluid.2008.06.008 10.1016/0021-9991(90)90145-Q 10.1006/jcph.1997.5838 10.1017/S0022112087002003 10.1006/jcph.1996.0085 10.1016/0021-9991(90)90222-M 10.2514/3.12016 10.1016/j.jcp.2016.10.067 10.1016/0021-9991(92)90046-2 10.1090/S0025-5718-01-01391-6 10.1016/S1570-8659(00)07004-6 10.1016/j.jcp.2021.110135 10.1016/j.compfluid.2019.104289 10.1007/BF00281235 10.1016/j.compfluid.2015.07.025 10.1016/0045-7930(91)90032-D 10.1002/cpa.3160481201 10.1007/s42757-019-0021-2 10.1016/0021-9991(88)90084-8 10.1016/0021-9991(91)90253-H 10.1016/j.jcp.2003.08.023 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright Elsevier Science Ltd. Feb 1, 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Feb 1, 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.jcp.2021.110821 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1090-2716 |
| ExternalDocumentID | oai:HAL:hal-03451235v1 10_1016_j_jcp_2021_110821 S0021999121007166 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c402t-df25f246cc890aa93a2eb24c77a6164aadc1678f90bdac6f73ddcbbd58d322f3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762859500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sat Nov 29 15:07:10 EST 2025 Sun Nov 30 04:30:05 EST 2025 Sat Nov 29 03:10:33 EST 2025 Tue Nov 18 20:00:26 EST 2025 Fri Feb 23 02:41:14 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-component real gas flow Monotonicity-Preserving constraints Roe approximate Riemann solver High-order numerical scheme Multi-component Real Gas Flow |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c402t-df25f246cc890aa93a2eb24c77a6164aadc1678f90bdac6f73ddcbbd58d322f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2024-485X 0000-0003-3309-8836 0000-0002-5656-8522 0000-0002-2055-5244 |
| OpenAccessLink | https://hal.science/hal-03451235 |
| PQID | 2638079101 |
| PQPubID | 2047462 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03451235v1 proquest_journals_2638079101 crossref_primary_10_1016_j_jcp_2021_110821 crossref_citationtrail_10_1016_j_jcp_2021_110821 elsevier_sciencedirect_doi_10_1016_j_jcp_2021_110821 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Ben Hassan Saïdi, Fournier, Tenaud (br0220) 2020; 34 Daru, Tenaud (br0180) 2009; 38 Tenaud, Roussel, Bentaleb (br0250) 2015; 120 Daru, Tenaud (br0020) 2004; 193 Anderson (br0040) 1989 Suresh, Huynh (br0190) 1997; 136 Mottura, Vigevano, Zaccanti (br0140) 1997; 138 Kundu, De (br0310) 2019; 193 Abgrall (br0170) 1996; 125 Leveque (br0210) 1992 Cox, Cinnella (br0110) 1994; 32 Cohen, Kaber, Müller, Postel (br0030) 2003; 72 Arabi, Trépanier, Camarero (br0120) 2017; 329 Denner, van Wachem (br0300) 2019; 1 Poinsot, Lele (br0320) 1992; 101 Arabi, Trépanier, Camarero (br0150) 2019; 388 Cohen (br0240) 2000 Poinsot, Veynante (br0050) 2005; 28 Strang (br0200) 1963; 12 McBride, Zehe, Gordon (br0260) 2002 Abgrall (br0070) 1991; 19 Liou, Leer, Shuen (br0100) 1990; 87 Montagne, Yee, Vinokur (br0010) 1989; 27 Spekreijse, Hagmeijer (br0130) 1990 Larrouturou (br0160) 1991; 95 Vinokur, Montagné (br0090) 1990; 89 Beccantini (br0270) 2000 Roe (br0060) 1981; 43 Coquel, Marmignon, Rai, Renac (br0280) 2021; 431 Haas, Sturtevant (br0290) 1987; 181 Glaister (br0080) 1988; 74 Harten (br0230) 1995; 48 Cox (10.1016/j.jcp.2021.110821_br0110) 1994; 32 Ben Hassan Saïdi (10.1016/j.jcp.2021.110821_br0220) 2020; 34 Arabi (10.1016/j.jcp.2021.110821_br0150) 2019; 388 Cohen (10.1016/j.jcp.2021.110821_br0030) 2003; 72 Coquel (10.1016/j.jcp.2021.110821_br0280) 2021; 431 Roe (10.1016/j.jcp.2021.110821_br0060) 1981; 43 Harten (10.1016/j.jcp.2021.110821_br0230) 1995; 48 Kundu (10.1016/j.jcp.2021.110821_br0310) 2019; 193 Montagne (10.1016/j.jcp.2021.110821_br0010) 1989; 27 McBride (10.1016/j.jcp.2021.110821_br0260) 2002 Arabi (10.1016/j.jcp.2021.110821_br0120) 2017; 329 Glaister (10.1016/j.jcp.2021.110821_br0080) 1988; 74 Anderson (10.1016/j.jcp.2021.110821_br0040) 1989 Beccantini (10.1016/j.jcp.2021.110821_br0270) 2000 Poinsot (10.1016/j.jcp.2021.110821_br0320) 1992; 101 Tenaud (10.1016/j.jcp.2021.110821_br0250) 2015; 120 Vinokur (10.1016/j.jcp.2021.110821_br0090) 1990; 89 Poinsot (10.1016/j.jcp.2021.110821_br0050) 2005; 28 Haas (10.1016/j.jcp.2021.110821_br0290) 1987; 181 Abgrall (10.1016/j.jcp.2021.110821_br0170) 1996; 125 Liou (10.1016/j.jcp.2021.110821_br0100) 1990; 87 Strang (10.1016/j.jcp.2021.110821_br0200) 1963; 12 Daru (10.1016/j.jcp.2021.110821_br0180) 2009; 38 Spekreijse (10.1016/j.jcp.2021.110821_br0130) 1990 Cohen (10.1016/j.jcp.2021.110821_br0240) 2000 Denner (10.1016/j.jcp.2021.110821_br0300) 2019; 1 Abgrall (10.1016/j.jcp.2021.110821_br0070) 1991; 19 Larrouturou (10.1016/j.jcp.2021.110821_br0160) 1991; 95 Mottura (10.1016/j.jcp.2021.110821_br0140) 1997; 138 Leveque (10.1016/j.jcp.2021.110821_br0210) 1992 Daru (10.1016/j.jcp.2021.110821_br0020) 2004; 193 Suresh (10.1016/j.jcp.2021.110821_br0190) 1997; 136 |
| References_xml | – volume: 32 start-page: 519 year: 1994 end-page: 527 ident: br0110 article-title: General solution procedure for flows in local chemical equilibrium publication-title: AIAA J. – volume: 87 start-page: 1 year: 1990 end-page: 24 ident: br0100 article-title: Splitting of inviscid fluxes for real gases publication-title: J. Comput. Phys. – start-page: 522 year: 1990 end-page: 532 ident: br0130 article-title: Derivation of a roe scheme for an n-species chemically reacting gas in thermal equilibrium publication-title: Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics – volume: 28 year: 2005 ident: br0050 article-title: Theoretical and numerical combustion publication-title: Prog. Energy Combust. Sci. – year: 2000 ident: br0240 article-title: Wavelet methods in numerical analysis publication-title: Handbook of Numerical Analysis, vol. 7 – volume: 74 start-page: 382 year: 1988 end-page: 408 ident: br0080 article-title: An approximate linearised Riemann solver for the Euler equations for real gases publication-title: J. Comput. Phys. – volume: 72 start-page: 183 year: 2003 end-page: 225 ident: br0030 article-title: Fully adaptive multiresolution finite volume schemes for conservation laws publication-title: Math. Comput. – year: 2002 ident: br0260 article-title: NASA glenn coefficients for calculating thermodynamic properties of individual species – volume: 101 start-page: 104 year: 1992 end-page: 129 ident: br0320 article-title: Boundary conditions for direct simulations of compressible viscous flows publication-title: J. Comput. Phys. – volume: 12 start-page: 392 year: 1963 end-page: 402 ident: br0200 article-title: Accurate partial difference methods. I. Linear Cauchy problems publication-title: Arch. Ration. Mech. Anal. – volume: 48 start-page: 1305 year: 1995 end-page: 1342 ident: br0230 article-title: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws publication-title: Commun. Pure Appl. Math. – volume: 43 start-page: 357 year: 1981 end-page: 372 ident: br0060 article-title: Approximate Riemann solvers, parameter vectors, and difference schemes publication-title: J. Comput. Phys. – year: 1992 ident: br0210 article-title: Numerical Methods for Conservation Laws – volume: 193 start-page: 563 year: 2004 end-page: 594 ident: br0020 article-title: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations publication-title: J. Comput. Phys. – volume: 138 start-page: 354 year: 1997 end-page: 399 ident: br0140 article-title: An evaluation of roe's scheme generalizations for equilibrium real gas flows publication-title: J. Comput. Phys. – volume: 329 start-page: 16 year: 2017 end-page: 28 ident: br0120 article-title: A simple extension of roe's scheme for real gases publication-title: J. Comput. Phys. – volume: 388 start-page: 178 year: 2019 end-page: 194 ident: br0150 article-title: A simple extension of roe's scheme for multi-component real gas flows publication-title: J. Comput. Phys. – volume: 120 start-page: 111 year: 2015 end-page: 125 ident: br0250 article-title: Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme publication-title: Comput. Fluids – year: 2000 ident: br0270 article-title: Upwind splitting schemes for ideal gases mixtures with temperature-dependent specific heat capacities – volume: 1 start-page: 271 year: 2019 end-page: 285 ident: br0300 article-title: Numerical modelling of shock-bubble interactions using a pressure-based algorithm without Riemann solvers publication-title: Exp. Comput. Multiph. Flow – volume: 89 start-page: 276 year: 1990 end-page: 300 ident: br0090 article-title: Generalized flux-vector splitting and roe average for an equilibrium real gas publication-title: J. Comput. Phys. – volume: 125 start-page: 150 year: 1996 end-page: 160 ident: br0170 article-title: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach publication-title: J. Comput. Phys. – volume: 136 start-page: 83 year: 1997 end-page: 99 ident: br0190 article-title: Accurate monotonicity-preserving schemes with Runge-Kutta time stepping publication-title: J. Comput. Phys. – volume: 19 start-page: 171 year: 1991 end-page: 182 ident: br0070 article-title: An extension of roe's upwind scheme to algebraic equilibrium real gas models publication-title: Comput. Fluids – volume: 193 year: 2019 ident: br0310 article-title: High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble publication-title: Comput. Fluids – volume: 95 start-page: 59 year: 1991 end-page: 84 ident: br0160 article-title: How to preserve the mass fractions positivity when computing compressible multi-component flows publication-title: J. Comput. Phys. – volume: 34 start-page: 671 year: 2020 end-page: 704 ident: br0220 article-title: On the behavior of high order one-step monotonicity-preserving scheme for direct numerical simulation of shocked turbulent flows publication-title: Int. J. Comput. Fluid Dyn. – year: 1989 ident: br0040 article-title: Hypersonics and High Temperature Gas Dynamics – volume: 27 start-page: 1332 year: 1989 end-page: 1346 ident: br0010 article-title: Comparative study of high-resolution shock-capturing schemes for a real gas publication-title: AIAA J. – volume: 38 start-page: 664 year: 2009 end-page: 676 ident: br0180 article-title: Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme publication-title: Comput. Fluids – volume: 431 year: 2021 ident: br0280 article-title: An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model publication-title: J. Comput. Phys. – volume: 181 start-page: 41 year: 1987 end-page: 76 ident: br0290 article-title: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities publication-title: J. Fluid Mech. – volume: 34 start-page: 671 issue: 9 year: 2020 ident: 10.1016/j.jcp.2021.110821_br0220 article-title: On the behavior of high order one-step monotonicity-preserving scheme for direct numerical simulation of shocked turbulent flows publication-title: Int. J. Comput. Fluid Dyn. doi: 10.1080/10618562.2020.1819535 – volume: 388 start-page: 178 year: 2019 ident: 10.1016/j.jcp.2021.110821_br0150 article-title: A simple extension of roe's scheme for multi-component real gas flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.03.007 – volume: 27 start-page: 1332 issue: 10 year: 1989 ident: 10.1016/j.jcp.2021.110821_br0010 article-title: Comparative study of high-resolution shock-capturing schemes for a real gas publication-title: AIAA J. doi: 10.2514/3.10269 – volume: 43 start-page: 357 issue: 2 year: 1981 ident: 10.1016/j.jcp.2021.110821_br0060 article-title: Approximate Riemann solvers, parameter vectors, and difference schemes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90128-5 – volume: 136 start-page: 83 year: 1997 ident: 10.1016/j.jcp.2021.110821_br0190 article-title: Accurate monotonicity-preserving schemes with Runge-Kutta time stepping publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5745 – volume: 38 start-page: 664 year: 2009 ident: 10.1016/j.jcp.2021.110821_br0180 article-title: Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.06.008 – volume: 89 start-page: 276 issue: 2 year: 1990 ident: 10.1016/j.jcp.2021.110821_br0090 article-title: Generalized flux-vector splitting and roe average for an equilibrium real gas publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90145-Q – volume: 138 start-page: 354 issue: 2 year: 1997 ident: 10.1016/j.jcp.2021.110821_br0140 article-title: An evaluation of roe's scheme generalizations for equilibrium real gas flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5838 – volume: 181 start-page: 41 year: 1987 ident: 10.1016/j.jcp.2021.110821_br0290 article-title: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities publication-title: J. Fluid Mech. doi: 10.1017/S0022112087002003 – volume: 125 start-page: 150 issue: 1 year: 1996 ident: 10.1016/j.jcp.2021.110821_br0170 article-title: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0085 – volume: 87 start-page: 1 issue: 1 year: 1990 ident: 10.1016/j.jcp.2021.110821_br0100 article-title: Splitting of inviscid fluxes for real gases publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90222-M – volume: 32 start-page: 519 issue: 3 year: 1994 ident: 10.1016/j.jcp.2021.110821_br0110 article-title: General solution procedure for flows in local chemical equilibrium publication-title: AIAA J. doi: 10.2514/3.12016 – volume: 329 start-page: 16 year: 2017 ident: 10.1016/j.jcp.2021.110821_br0120 article-title: A simple extension of roe's scheme for real gases publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.067 – year: 1989 ident: 10.1016/j.jcp.2021.110821_br0040 – volume: 101 start-page: 104 year: 1992 ident: 10.1016/j.jcp.2021.110821_br0320 article-title: Boundary conditions for direct simulations of compressible viscous flows publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90046-2 – volume: 72 start-page: 183 year: 2003 ident: 10.1016/j.jcp.2021.110821_br0030 article-title: Fully adaptive multiresolution finite volume schemes for conservation laws publication-title: Math. Comput. doi: 10.1090/S0025-5718-01-01391-6 – year: 2002 ident: 10.1016/j.jcp.2021.110821_br0260 – year: 2000 ident: 10.1016/j.jcp.2021.110821_br0240 article-title: Wavelet methods in numerical analysis doi: 10.1016/S1570-8659(00)07004-6 – volume: 431 year: 2021 ident: 10.1016/j.jcp.2021.110821_br0280 article-title: An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110135 – volume: 193 year: 2019 ident: 10.1016/j.jcp.2021.110821_br0310 article-title: High resolution numerical simulation of a shock-accelerated refrigerant-22 bubble publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.104289 – volume: 12 start-page: 392 year: 1963 ident: 10.1016/j.jcp.2021.110821_br0200 article-title: Accurate partial difference methods. I. Linear Cauchy problems publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00281235 – year: 1992 ident: 10.1016/j.jcp.2021.110821_br0210 – year: 2000 ident: 10.1016/j.jcp.2021.110821_br0270 – volume: 120 start-page: 111 year: 2015 ident: 10.1016/j.jcp.2021.110821_br0250 article-title: Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.07.025 – volume: 19 start-page: 171 issue: 2 year: 1991 ident: 10.1016/j.jcp.2021.110821_br0070 article-title: An extension of roe's upwind scheme to algebraic equilibrium real gas models publication-title: Comput. Fluids doi: 10.1016/0045-7930(91)90032-D – volume: 48 start-page: 1305 issue: 12 year: 1995 ident: 10.1016/j.jcp.2021.110821_br0230 article-title: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160481201 – volume: 1 start-page: 271 issue: 4 year: 2019 ident: 10.1016/j.jcp.2021.110821_br0300 article-title: Numerical modelling of shock-bubble interactions using a pressure-based algorithm without Riemann solvers publication-title: Exp. Comput. Multiph. Flow doi: 10.1007/s42757-019-0021-2 – volume: 74 start-page: 382 issue: 2 year: 1988 ident: 10.1016/j.jcp.2021.110821_br0080 article-title: An approximate linearised Riemann solver for the Euler equations for real gases publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90084-8 – start-page: 522 year: 1990 ident: 10.1016/j.jcp.2021.110821_br0130 article-title: Derivation of a roe scheme for an n-species chemically reacting gas in thermal equilibrium – volume: 95 start-page: 59 issue: 1 year: 1991 ident: 10.1016/j.jcp.2021.110821_br0160 article-title: How to preserve the mass fractions positivity when computing compressible multi-component flows publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(91)90253-H – volume: 193 start-page: 563 year: 2004 ident: 10.1016/j.jcp.2021.110821_br0020 article-title: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.08.023 – volume: 28 year: 2005 ident: 10.1016/j.jcp.2021.110821_br0050 article-title: Theoretical and numerical combustion publication-title: Prog. Energy Combust. Sci. |
| SSID | ssj0008548 |
| Score | 2.396226 |
| Snippet | •Generalization of the Roe approximate Riemann solver to Multicomponent Real Gas Flow.•High-order accuracy with One Step Monotonicity Preserving... The purpose of this paper is to develop a high-order shock-capturing scheme capable of predicting flows where shock waves with high-temperature jumps interact... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110821 |
| SubjectTerms | Approximation Compressibility Computational physics Discontinuity Flow distribution Fluid mechanics Gas flow Gas mixtures Gases High temperature High-order numerical scheme Ideal gas Local thermodynamic equilibrium Mechanics Monotonicity-Preserving constraints Multi-component real gas flow Numerical analysis Numerical methods Physics Real gases Refrigerants Riemann solver Roe approximate Riemann solver Shock waves Sound Thermodynamic properties Thermodynamics |
| Title | High-order numerical scheme for compressible multi-component real gas flows using an extension of the Roe approximate Riemann solver and specific Monotonicity-Preserving constraints |
| URI | https://dx.doi.org/10.1016/j.jcp.2021.110821 https://www.proquest.com/docview/2638079101 https://hal.science/hal-03451235 |
| Volume | 450 |
| WOSCitedRecordID | wos000762859500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKBxIvfAwQhYEsxBNVpsT5fqxgUwdVVY0K9S1ynWRN6ZKpaUv_GH-L38C9tpNmhU3jgZeodWsr6T21j6_PvZeQ9xZmlRO2ZzB7GhiOlYRGaE5dg8WccxYHKUtUsQl_OAwmk3DUav2qYmE2Cz_Pg-02vPqvpoY2MDaGzv6DuetBoQFeg9HhCmaH650Mj8oNQ2bU7OZrdR6DcY-z5FLl90YRuRS_YsyU1BMa2FTkqApYYp7hC15200Xxo-yuSxXD2JW-8lKTS-Sq50Wi8pFvM-C88D5LLnmed-HZ4BeTRxIYxIlCJJw3ihWm4AXGb6DmA-cnGeuL6Wt5prNJ_YUjC1lzovJXKi9MvQkYwM45w7Sc0rewFlX7t0zAYqcL0Z9Dz53QYB2DAb4XG-nzxbjT-kAB9ZQ69GclNXBNdwjspM1r0pIqTqc556MIJVQ1wY4TNc2boWkwX0V5_rGIKH_G_HguMKEps2SoBLN2K2alEuj3vkajT6fR4Gz45fqnDZVjvzeA64wvDNN2XAxN3sBu_YD5bhi0yUHv7GTyueYOgeso7qDvuTqHl4rEvfu5iUndm6Gkd49ZSLo0fkIeaRvSnsLnU9JK8kPyWO95qF5RykPyYKSM-oz83AGX1sClCrgUgEubwKV7wKUIXArApRK4VAKX8pzWwKVFSgG4FIBLG8ClGrhUARe6xLQCLr0BuLQB3OdkfHoy_tg3dFERQzgmWxlxytyUOZ4QQWhyHtqcJVPmCN_nnuU5nMfCAgKXwowVc-Glvh3HYjqN3SCGtS-1X5B2Dg_2klDXFrAbYlhAYAo0nHEn4VZqChs4csK9uEPMyj6R0An38d4WUaWsnEdg0ghNGimTdsiHusuVyjZz25edyuiRpsuKBkcA5Nu6vQOA1MNjenmAaIRtO4B2yFGFn0jPbWXEPKxOAfsL69VdxnhNHu7-oEekvVqukzfkvtissnL5ViP_N79E_-s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-order+numerical+scheme+for+compressible+multi-component+real+gas+flows+using+an+extension+of+the+Roe+approximate+Riemann+solver+and+specific+Monotonicity-Preserving+constraints&rft.jtitle=Journal+of+computational+physics&rft.au=Lecointre%2C+Luc&rft.au=Vicquelin%2C+Ronan&rft.au=Kudriakov%2C+Sergey&rft.au=Studer%2C+Etienne&rft.date=2022-02-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016%2Fj.jcp.2021.110821&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03451235v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |