Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 10; no. 23; p. 8400
Main Authors: Dairi, Abdelkader, Harrou, Fouzi, Sun, Ying, Khadraoui, Sofiane
Format: Journal Article
Language:English
Published: MDPI AG 01.12.2020
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.
AbstractList The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.
Author Sun, Ying
Dairi, Abdelkader
Khadraoui, Sofiane
Harrou, Fouzi
Author_xml – sequence: 1
  givenname: Abdelkader
  orcidid: 0000-0003-4712-6949
  surname: Dairi
  fullname: Dairi, Abdelkader
– sequence: 2
  givenname: Fouzi
  orcidid: 0000-0002-2138-319X
  surname: Harrou
  fullname: Harrou, Fouzi
– sequence: 3
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
– sequence: 4
  givenname: Sofiane
  surname: Khadraoui
  fullname: Khadraoui, Sofiane
BookMark eNptkUtLw0AQxxdR8HnyC-xdovtINtljsVULBYVWr2Gy2bVb0kzYbCv66U2riIhzmOdv_oeZU3LYYmsJueTsWkrNbqDrOBOySBk7ICeC5SqRKc8Pf-XH5KLvV2wwzWXB2Qn5mC8xxGRhw5reYbAG-ujbV4qOPi0x4habCN7QOTYQ6BO-2cEHrDcmemzpc7-DXyB42NXQ0NEmYjJpDdYDOQ5-a1s6trajMwuh3dGjrgsIZnlOjhw0vb34jmfk-W6yuH1IZo_309vRLDEpEzGpsxyUdEZXDpRizgltiipPjasK0Co3mdQgocqVllpJwU02zJWoiwpcOkzPyPRLt0ZYlV3wawjvJYIv9w0MryWE6E1jS1lBluZOOKEgFTqvaqh0VnPHLJNCykHr6kvLBOz7YN2PHmfl7gvlry8MNP9DGx_3h4oBfPPvzierbo5N
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102504
crossref_primary_10_3390_biomimetics8030312
crossref_primary_10_1109_ACCESS_2024_3502657
crossref_primary_10_1016_j_seta_2022_102326
crossref_primary_10_3390_en15217978
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_3390_app11115287
crossref_primary_10_1007_s40095_022_00488_3
crossref_primary_10_3390_en16135093
crossref_primary_10_1007_s42835_023_01446_7
crossref_primary_10_1016_j_ecmx_2025_101108
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1109_TIM_2021_3130675
crossref_primary_10_1007_s40313_024_01099_5
crossref_primary_10_3390_s24020569
crossref_primary_10_1016_j_egyr_2024_08_007
crossref_primary_10_1007_s11356_023_25606_4
crossref_primary_10_3390_buildings13082098
crossref_primary_10_1016_j_egyr_2022_01_120
crossref_primary_10_1109_ACCESS_2022_3215080
crossref_primary_10_1049_rpg2_12736
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_1109_JSTARS_2020_3042760
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_3390_en18102461
crossref_primary_10_1109_ACCESS_2024_3496120
crossref_primary_10_3390_su151612151
crossref_primary_10_1109_JSEN_2022_3140922
crossref_primary_10_3390_su15097087
crossref_primary_10_1109_OJCS_2025_3580339
crossref_primary_10_3390_en15093320
crossref_primary_10_3390_en16124773
crossref_primary_10_3390_rs15051277
crossref_primary_10_1016_j_segan_2023_101245
crossref_primary_10_3390_app12094482
crossref_primary_10_3390_en18112770
crossref_primary_10_1002_cpe_6604
crossref_primary_10_1016_j_rineng_2024_102342
crossref_primary_10_1016_j_apenergy_2021_118185
crossref_primary_10_1016_j_est_2023_106784
crossref_primary_10_1177_0958305X251367102
crossref_primary_10_1016_j_energy_2021_122812
crossref_primary_10_1016_j_ecmx_2025_101117
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_3389_fnbot_2024_1431643
crossref_primary_10_1016_j_energy_2023_127542
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1016_j_renene_2022_09_058
crossref_primary_10_1109_TIM_2021_3091511
crossref_primary_10_1007_s00521_024_10751_9
crossref_primary_10_1007_s00500_023_08497_y
crossref_primary_10_1049_gtd2_12603
crossref_primary_10_1016_j_apenergy_2025_126606
crossref_primary_10_1007_s00202_023_01806_6
crossref_primary_10_1016_j_jclepro_2022_134979
crossref_primary_10_1051_epjpv_2024013
crossref_primary_10_1016_j_inffus_2025_103617
crossref_primary_10_3390_en16155718
crossref_primary_10_3390_su16072853
crossref_primary_10_1109_ACCESS_2025_3570719
crossref_primary_10_1016_j_suscom_2024_101041
crossref_primary_10_1109_ACCESS_2023_3237250
crossref_primary_10_3390_en16186656
crossref_primary_10_1080_15435075_2025_2538109
crossref_primary_10_1016_j_jclepro_2021_127037
crossref_primary_10_1016_j_apenergy_2025_126132
crossref_primary_10_3390_en15239146
crossref_primary_10_3390_forecast7010005
crossref_primary_10_1038_s41598_024_57398_z
crossref_primary_10_1049_rpg2_13050
crossref_primary_10_1093_ce_zkae097
crossref_primary_10_1016_j_jksuci_2023_101816
crossref_primary_10_3390_en15062150
crossref_primary_10_1007_s11356_023_28028_4
crossref_primary_10_1016_j_apenergy_2021_117871
crossref_primary_10_1080_15435075_2023_2276152
crossref_primary_10_1109_ACCESS_2021_3110947
Cites_doi 10.1109/MIM.2020.9153576
10.1109/TSTE.2019.2903900
10.1109/TSTE.2019.2931154
10.1162/neco.2006.18.7.1527
10.5772/intechopen.91248
10.3390/en13081879
10.3115/v1/D14-1179
10.1561/9781601982957
10.1016/j.apenergy.2020.114823
10.1117/1.JEI.28.2.021012
10.1109/TSTE.2018.2832634
10.1016/j.renene.2019.03.020
10.1016/j.energy.2018.01.177
10.1162/neco.1997.9.8.1735
10.1016/j.apenergy.2020.115410
10.1109/TPWRS.2017.2688178
10.1016/j.jclepro.2015.08.099
10.1016/j.apenergy.2019.114216
10.1109/MCI.2018.2840738
10.1109/78.650093
10.1016/j.segan.2019.100286
10.1016/j.apenergy.2019.113315
10.1016/j.jenvman.2018.06.087
10.1109/JSEN.2018.2852001
10.1038/nature16961
10.1109/ICASSP.2013.6638947
10.1016/j.apenergy.2014.03.045
10.1109/TSTE.2017.2694340
10.1016/j.scs.2019.101670
10.5772/intechopen.85999
10.1016/j.chaos.2020.110121
10.1109/JSEN.2018.2831082
10.3390/en11082163
10.6028/jres.122.040
10.1007/s41109-019-0234-0
10.1109/iEECON48109.2020.229517
10.1016/j.renene.2015.03.038
10.1109/TPWRS.2019.2941277
10.1109/ACCESS.2020.3016062
10.1016/j.enconman.2020.112766
10.1016/j.enconman.2017.10.008
10.3390/en12132538
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/app10238400
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_3ba547f2f26a4297bdab95d1f0e03233
10_3390_app10238400
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ID FETCH-LOGICAL-c402t-d57a63fc9bfa660ff29c8b74cfb8a967c539a3ab769396321c5c8b62d8baf4c53
IEDL.DBID DOA
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597135000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:38:24 EDT 2025
Tue Nov 18 20:56:27 EST 2025
Sat Nov 29 07:09:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-d57a63fc9bfa660ff29c8b74cfb8a967c539a3ab769396321c5c8b62d8baf4c53
ORCID 0000-0003-4712-6949
0000-0002-2138-319X
OpenAccessLink https://doaj.org/article/3ba547f2f26a4297bdab95d1f0e03233
ParticipantIDs doaj_primary_oai_doaj_org_article_3ba547f2f26a4297bdab95d1f0e03233
crossref_primary_10_3390_app10238400
crossref_citationtrail_10_3390_app10238400
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hochreiter (ref_40) 1997; 9
Schuster (ref_42) 1997; 45
ref_10
ref_53
Qing (ref_7) 2018; 148
Zeroual (ref_28) 2020; 140
Wang (ref_31) 2020; 8
Zhang (ref_19) 2019; 10
Hittawe (ref_30) 2019; 28
Bergstra (ref_51) 2012; 13
Wang (ref_38) 2017; 153
Wang (ref_3) 2019; 251
ref_25
Young (ref_26) 2018; 13
ref_20
Dairi (ref_21) 2019; 50
Li (ref_9) 2020; 259
Harrou (ref_23) 2018; 223
Behera (ref_2) 2018; 21
ref_27
Hinton (ref_44) 2006; 18
Boyd (ref_52) 2017; 122
Wang (ref_35) 2020; 212
Dorffner (ref_39) 1996; 6
Kushwaha (ref_12) 2019; 140
Dairi (ref_24) 2018; 18
Xingjian (ref_43) 2015; 28
Fu (ref_5) 2012; 40
Matallanas (ref_1) 2014; 125
Zhang (ref_14) 2020; 35
Rana (ref_16) 2020; 21
Harrou (ref_22) 2018; 18
ref_34
ref_33
Chitalia (ref_8) 2020; 278
Kempinska (ref_48) 2019; 4
ref_37
Silver (ref_32) 2016; 529
Sun (ref_6) 2020; 266
Andrade (ref_17) 2017; 8
Su (ref_18) 2020; 11
ref_47
ref_46
ref_45
Prema (ref_11) 2015; 83
Lin (ref_13) 2016; 134
ref_41
Harrou (ref_29) 2020; 23
ref_49
Sanjari (ref_15) 2020; 11
ref_4
Kong (ref_36) 2018; 33
References_xml – volume: 21
  start-page: 428
  year: 2018
  ident: ref_2
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_49
– volume: 23
  start-page: 57
  year: 2020
  ident: ref_29
  article-title: Malicious attacks detection in crowded areas using deep learning-based approach
  publication-title: IEEE Instrum. Meas. Mag.
  doi: 10.1109/MIM.2020.9153576
– volume: 11
  start-page: 703
  year: 2020
  ident: ref_15
  article-title: Power Generation Forecast of Hybrid PV—Wind System
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2903900
– volume: 11
  start-page: 1103
  year: 2020
  ident: ref_18
  article-title: Adaptive Residual Compensation Ensemble Models for Improving Solar Energy Generation Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2931154
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_44
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref_4
  doi: 10.5772/intechopen.91248
– ident: ref_37
  doi: 10.3390/en13081879
– ident: ref_41
  doi: 10.3115/v1/D14-1179
– ident: ref_46
  doi: 10.1561/9781601982957
– volume: 266
  start-page: 114823
  year: 2020
  ident: ref_6
  article-title: Probabilistic solar power forecasting based on weather scenario generation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114823
– volume: 28
  start-page: 802
  year: 2015
  ident: ref_43
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 28
  start-page: 021012
  year: 2019
  ident: ref_30
  article-title: Abnormal events detection using deep neural networks: Application to extreme sea surface temperature detection in the Red Sea
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.2.021012
– volume: 10
  start-page: 268
  year: 2019
  ident: ref_19
  article-title: A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2832634
– ident: ref_45
– volume: 140
  start-page: 124
  year: 2019
  ident: ref_12
  article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.03.020
– volume: 148
  start-page: 461
  year: 2018
  ident: ref_7
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– ident: ref_20
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_40
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 278
  start-page: 115410
  year: 2020
  ident: ref_8
  article-title: Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115410
– volume: 40
  start-page: 65
  year: 2012
  ident: ref_5
  article-title: Short-term photovoltaic power forecasting based on similar days and least square support vector machine
  publication-title: Power Syst. Prot. Control
– volume: 33
  start-page: 1087
  year: 2018
  ident: ref_36
  article-title: Short-Term Residential Load Forecasting Based on Resident Behaviour Learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2688178
– volume: 134
  start-page: 456
  year: 2016
  ident: ref_13
  article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.08.099
– volume: 259
  start-page: 114216
  year: 2020
  ident: ref_9
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114216
– volume: 13
  start-page: 55
  year: 2018
  ident: ref_26
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2018.2840738
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_42
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 21
  start-page: 100286
  year: 2020
  ident: ref_16
  article-title: Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2019.100286
– ident: ref_47
– volume: 251
  start-page: 113315
  year: 2019
  ident: ref_3
  article-title: A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113315
– volume: 223
  start-page: 807
  year: 2018
  ident: ref_23
  article-title: Statistical monitoring of a wastewater treatment plant: A case study
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2018.06.087
– volume: 18
  start-page: 7222
  year: 2018
  ident: ref_22
  article-title: Detecting abnormal ozone measurements with a deep learning-based strategy
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2852001
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_32
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_27
  doi: 10.1109/ICASSP.2013.6638947
– volume: 125
  start-page: 103
  year: 2014
  ident: ref_1
  article-title: Improving photovoltaics grid integration through short time forecasting and self-consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.045
– volume: 8
  start-page: 1571
  year: 2017
  ident: ref_17
  article-title: Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2694340
– volume: 50
  start-page: 101670
  year: 2019
  ident: ref_21
  article-title: Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101670
– volume: 13
  start-page: 281
  year: 2012
  ident: ref_51
  article-title: Random Search for Hyper-Parameter Optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_53
  doi: 10.5772/intechopen.85999
– ident: ref_25
– volume: 140
  start-page: 110121
  year: 2020
  ident: ref_28
  article-title: Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110121
– ident: ref_50
– volume: 18
  start-page: 5122
  year: 2018
  ident: ref_24
  article-title: Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2831082
– ident: ref_34
  doi: 10.3390/en11082163
– volume: 122
  start-page: 40
  year: 2017
  ident: ref_52
  article-title: Performance Data from the NIST Photovoltaic Arrays and Weather Station
  publication-title: J. Res. Natl. Inst. Stand. Technol.
  doi: 10.6028/jres.122.040
– volume: 4
  start-page: 1
  year: 2019
  ident: ref_48
  article-title: Modelling urban networks using Variational Autoencoders
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-019-0234-0
– ident: ref_10
  doi: 10.1109/iEECON48109.2020.229517
– volume: 83
  start-page: 100
  year: 2015
  ident: ref_11
  article-title: Development of statistical time series models for solar power prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.038
– volume: 35
  start-page: 1351
  year: 2020
  ident: ref_14
  article-title: A Novel Method for Hourly Electricity Demand Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2941277
– volume: 8
  start-page: 147635
  year: 2020
  ident: ref_31
  article-title: Early Detection of Parkinson’s Disease Using Deep Learning and Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016062
– volume: 212
  start-page: 112766
  year: 2020
  ident: ref_35
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112766
– volume: 6
  start-page: 447
  year: 1996
  ident: ref_39
  article-title: Neural networks for time series processing
  publication-title: Neural Netw. World
– volume: 153
  start-page: 409
  year: 2017
  ident: ref_38
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.008
– ident: ref_33
  doi: 10.3390/en12132538
SSID ssj0000913810
Score 2.5160954
Snippet The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 8400
SubjectTerms data-driven
deep learning
photovoltaic power forecasting
RNN
variational autoencoders
Title Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach
URI https://doaj.org/article/3ba547f2f26a4297bdab95d1f0e03233
Volume 10
WOSCitedRecordID wos000597135000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Access via ProQuest (Open Access)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1JS8UwEMeDqAc9iCvu5OBBhWKarjk-N_SgFFzQU8nqE-RV3qse_PTOpFEqCF68NiGUzGSSfzv5DSF7zHFumdJR7KHaOY8jJZiLcmlNYgxsyFL7YhPF9XX58CCqXqkvzAnr8MDdxB0lSmZp4bjjuYTYWSgjlchM7JhlCU8855MVoiemfAwWMaKrugt5Ceh6_B-MlALQM-zHFtQj9fst5XyRLISzIB1077BEpuxomcz3CIHLZCmsvQndD4DogxXycTOEQ3N0C0GVYmlNLSeYvEwbR6th0zYQcUDwa3qDspVWWAeNVh3ZFaxAfZYAvQeRHD4E0sFb20RnI7zePqanYwyA9NTaVxroq090ENDjq-Tu_Oz25CIKNRQiDcqwjUxWyDxxWign85w5x4UuVZFqp0op8kJniZCJVFgSEdYij3UG7Tk3pZIuhdY1Mj1qRnad0IwLJqVD3r1Ksa5f4crUGAbD2VgxsUEOv6a11gEwjnUuXmoQGmiDumeDDbL33fm142r83u0Y7fPdBWHY_gG4SB1cpP7LRTb_Y5AtMsdRavtMlm0y3Y7f7A6Z1e_t82S8671vl8xUl1fV4yeYEOJO
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Forecasting+of+Photovoltaic+Solar+Power+Production+Using+Variational+Auto-Encoder+Driven+Deep+Learning+Approach&rft.jtitle=Applied+sciences&rft.au=Abdelkader+Dairi&rft.au=Fouzi+Harrou&rft.au=Ying+Sun&rft.au=Sofiane+Khadraoui&rft.date=2020-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8400&rft_id=info:doi/10.3390%2Fapp10238400&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3ba547f2f26a4297bdab95d1f0e03233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon