Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach
The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder...
Saved in:
| Published in: | Applied sciences Vol. 10; no. 23; p. 8400 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
MDPI AG
01.12.2020
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models. |
|---|---|
| AbstractList | The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models. |
| Author | Sun, Ying Dairi, Abdelkader Khadraoui, Sofiane Harrou, Fouzi |
| Author_xml | – sequence: 1 givenname: Abdelkader orcidid: 0000-0003-4712-6949 surname: Dairi fullname: Dairi, Abdelkader – sequence: 2 givenname: Fouzi orcidid: 0000-0002-2138-319X surname: Harrou fullname: Harrou, Fouzi – sequence: 3 givenname: Ying surname: Sun fullname: Sun, Ying – sequence: 4 givenname: Sofiane surname: Khadraoui fullname: Khadraoui, Sofiane |
| BookMark | eNptkUtLw0AQxxdR8HnyC-xdovtINtljsVULBYVWr2Gy2bVb0kzYbCv66U2riIhzmOdv_oeZU3LYYmsJueTsWkrNbqDrOBOySBk7ICeC5SqRKc8Pf-XH5KLvV2wwzWXB2Qn5mC8xxGRhw5reYbAG-ujbV4qOPi0x4habCN7QOTYQ6BO-2cEHrDcmemzpc7-DXyB42NXQ0NEmYjJpDdYDOQ5-a1s6trajMwuh3dGjrgsIZnlOjhw0vb34jmfk-W6yuH1IZo_309vRLDEpEzGpsxyUdEZXDpRizgltiipPjasK0Co3mdQgocqVllpJwU02zJWoiwpcOkzPyPRLt0ZYlV3wawjvJYIv9w0MryWE6E1jS1lBluZOOKEgFTqvaqh0VnPHLJNCykHr6kvLBOz7YN2PHmfl7gvlry8MNP9DGx_3h4oBfPPvzierbo5N |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2024_102504 crossref_primary_10_3390_biomimetics8030312 crossref_primary_10_1109_ACCESS_2024_3502657 crossref_primary_10_1016_j_seta_2022_102326 crossref_primary_10_3390_en15217978 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_3390_app11115287 crossref_primary_10_1007_s40095_022_00488_3 crossref_primary_10_3390_en16135093 crossref_primary_10_1007_s42835_023_01446_7 crossref_primary_10_1016_j_ecmx_2025_101108 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_1109_TIM_2021_3130675 crossref_primary_10_1007_s40313_024_01099_5 crossref_primary_10_3390_s24020569 crossref_primary_10_1016_j_egyr_2024_08_007 crossref_primary_10_1007_s11356_023_25606_4 crossref_primary_10_3390_buildings13082098 crossref_primary_10_1016_j_egyr_2022_01_120 crossref_primary_10_1109_ACCESS_2022_3215080 crossref_primary_10_1049_rpg2_12736 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_1109_JSTARS_2020_3042760 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_3390_en18102461 crossref_primary_10_1109_ACCESS_2024_3496120 crossref_primary_10_3390_su151612151 crossref_primary_10_1109_JSEN_2022_3140922 crossref_primary_10_3390_su15097087 crossref_primary_10_1109_OJCS_2025_3580339 crossref_primary_10_3390_en15093320 crossref_primary_10_3390_en16124773 crossref_primary_10_3390_rs15051277 crossref_primary_10_1016_j_segan_2023_101245 crossref_primary_10_3390_app12094482 crossref_primary_10_3390_en18112770 crossref_primary_10_1002_cpe_6604 crossref_primary_10_1016_j_rineng_2024_102342 crossref_primary_10_1016_j_apenergy_2021_118185 crossref_primary_10_1016_j_est_2023_106784 crossref_primary_10_1177_0958305X251367102 crossref_primary_10_1016_j_energy_2021_122812 crossref_primary_10_1016_j_ecmx_2025_101117 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_3389_fnbot_2024_1431643 crossref_primary_10_1016_j_energy_2023_127542 crossref_primary_10_1016_j_ref_2025_100739 crossref_primary_10_1016_j_renene_2022_09_058 crossref_primary_10_1109_TIM_2021_3091511 crossref_primary_10_1007_s00521_024_10751_9 crossref_primary_10_1007_s00500_023_08497_y crossref_primary_10_1049_gtd2_12603 crossref_primary_10_1016_j_apenergy_2025_126606 crossref_primary_10_1007_s00202_023_01806_6 crossref_primary_10_1016_j_jclepro_2022_134979 crossref_primary_10_1051_epjpv_2024013 crossref_primary_10_1016_j_inffus_2025_103617 crossref_primary_10_3390_en16155718 crossref_primary_10_3390_su16072853 crossref_primary_10_1109_ACCESS_2025_3570719 crossref_primary_10_1016_j_suscom_2024_101041 crossref_primary_10_1109_ACCESS_2023_3237250 crossref_primary_10_3390_en16186656 crossref_primary_10_1080_15435075_2025_2538109 crossref_primary_10_1016_j_jclepro_2021_127037 crossref_primary_10_1016_j_apenergy_2025_126132 crossref_primary_10_3390_en15239146 crossref_primary_10_3390_forecast7010005 crossref_primary_10_1038_s41598_024_57398_z crossref_primary_10_1049_rpg2_13050 crossref_primary_10_1093_ce_zkae097 crossref_primary_10_1016_j_jksuci_2023_101816 crossref_primary_10_3390_en15062150 crossref_primary_10_1007_s11356_023_28028_4 crossref_primary_10_1016_j_apenergy_2021_117871 crossref_primary_10_1080_15435075_2023_2276152 crossref_primary_10_1109_ACCESS_2021_3110947 |
| Cites_doi | 10.1109/MIM.2020.9153576 10.1109/TSTE.2019.2903900 10.1109/TSTE.2019.2931154 10.1162/neco.2006.18.7.1527 10.5772/intechopen.91248 10.3390/en13081879 10.3115/v1/D14-1179 10.1561/9781601982957 10.1016/j.apenergy.2020.114823 10.1117/1.JEI.28.2.021012 10.1109/TSTE.2018.2832634 10.1016/j.renene.2019.03.020 10.1016/j.energy.2018.01.177 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2020.115410 10.1109/TPWRS.2017.2688178 10.1016/j.jclepro.2015.08.099 10.1016/j.apenergy.2019.114216 10.1109/MCI.2018.2840738 10.1109/78.650093 10.1016/j.segan.2019.100286 10.1016/j.apenergy.2019.113315 10.1016/j.jenvman.2018.06.087 10.1109/JSEN.2018.2852001 10.1038/nature16961 10.1109/ICASSP.2013.6638947 10.1016/j.apenergy.2014.03.045 10.1109/TSTE.2017.2694340 10.1016/j.scs.2019.101670 10.5772/intechopen.85999 10.1016/j.chaos.2020.110121 10.1109/JSEN.2018.2831082 10.3390/en11082163 10.6028/jres.122.040 10.1007/s41109-019-0234-0 10.1109/iEECON48109.2020.229517 10.1016/j.renene.2015.03.038 10.1109/TPWRS.2019.2941277 10.1109/ACCESS.2020.3016062 10.1016/j.enconman.2020.112766 10.1016/j.enconman.2017.10.008 10.3390/en12132538 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3390/app10238400 |
| DatabaseName | CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_3ba547f2f26a4297bdab95d1f0e03233 10_3390_app10238400 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS |
| ID | FETCH-LOGICAL-c402t-d57a63fc9bfa660ff29c8b74cfb8a967c539a3ab769396321c5c8b62d8baf4c53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597135000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:38:24 EDT 2025 Tue Nov 18 20:56:27 EST 2025 Sat Nov 29 07:09:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-d57a63fc9bfa660ff29c8b74cfb8a967c539a3ab769396321c5c8b62d8baf4c53 |
| ORCID | 0000-0003-4712-6949 0000-0002-2138-319X |
| OpenAccessLink | https://doaj.org/article/3ba547f2f26a4297bdab95d1f0e03233 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ba547f2f26a4297bdab95d1f0e03233 crossref_primary_10_3390_app10238400 crossref_citationtrail_10_3390_app10238400 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied sciences |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Hochreiter (ref_40) 1997; 9 Schuster (ref_42) 1997; 45 ref_10 ref_53 Qing (ref_7) 2018; 148 Zeroual (ref_28) 2020; 140 Wang (ref_31) 2020; 8 Zhang (ref_19) 2019; 10 Hittawe (ref_30) 2019; 28 Bergstra (ref_51) 2012; 13 Wang (ref_38) 2017; 153 Wang (ref_3) 2019; 251 ref_25 Young (ref_26) 2018; 13 ref_20 Dairi (ref_21) 2019; 50 Li (ref_9) 2020; 259 Harrou (ref_23) 2018; 223 Behera (ref_2) 2018; 21 ref_27 Hinton (ref_44) 2006; 18 Boyd (ref_52) 2017; 122 Wang (ref_35) 2020; 212 Dorffner (ref_39) 1996; 6 Kushwaha (ref_12) 2019; 140 Dairi (ref_24) 2018; 18 Xingjian (ref_43) 2015; 28 Fu (ref_5) 2012; 40 Matallanas (ref_1) 2014; 125 Zhang (ref_14) 2020; 35 Rana (ref_16) 2020; 21 Harrou (ref_22) 2018; 18 ref_34 ref_33 Chitalia (ref_8) 2020; 278 Kempinska (ref_48) 2019; 4 ref_37 Silver (ref_32) 2016; 529 Sun (ref_6) 2020; 266 Andrade (ref_17) 2017; 8 Su (ref_18) 2020; 11 ref_47 ref_46 ref_45 Prema (ref_11) 2015; 83 Lin (ref_13) 2016; 134 ref_41 Harrou (ref_29) 2020; 23 ref_49 Sanjari (ref_15) 2020; 11 ref_4 Kong (ref_36) 2018; 33 |
| References_xml | – volume: 21 start-page: 428 year: 2018 ident: ref_2 article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique publication-title: Eng. Sci. Technol. Int. J. – ident: ref_49 – volume: 23 start-page: 57 year: 2020 ident: ref_29 article-title: Malicious attacks detection in crowded areas using deep learning-based approach publication-title: IEEE Instrum. Meas. Mag. doi: 10.1109/MIM.2020.9153576 – volume: 11 start-page: 703 year: 2020 ident: ref_15 article-title: Power Generation Forecast of Hybrid PV—Wind System publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2903900 – volume: 11 start-page: 1103 year: 2020 ident: ref_18 article-title: Adaptive Residual Compensation Ensemble Models for Improving Solar Energy Generation Forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2931154 – volume: 18 start-page: 1527 year: 2006 ident: ref_44 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: ref_4 doi: 10.5772/intechopen.91248 – ident: ref_37 doi: 10.3390/en13081879 – ident: ref_41 doi: 10.3115/v1/D14-1179 – ident: ref_46 doi: 10.1561/9781601982957 – volume: 266 start-page: 114823 year: 2020 ident: ref_6 article-title: Probabilistic solar power forecasting based on weather scenario generation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114823 – volume: 28 start-page: 802 year: 2015 ident: ref_43 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 021012 year: 2019 ident: ref_30 article-title: Abnormal events detection using deep neural networks: Application to extreme sea surface temperature detection in the Red Sea publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.28.2.021012 – volume: 10 start-page: 268 year: 2019 ident: ref_19 article-title: A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2832634 – ident: ref_45 – volume: 140 start-page: 124 year: 2019 ident: ref_12 article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast publication-title: Renew. Energy doi: 10.1016/j.renene.2019.03.020 – volume: 148 start-page: 461 year: 2018 ident: ref_7 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – ident: ref_20 – volume: 9 start-page: 1735 year: 1997 ident: ref_40 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 278 start-page: 115410 year: 2020 ident: ref_8 article-title: Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115410 – volume: 40 start-page: 65 year: 2012 ident: ref_5 article-title: Short-term photovoltaic power forecasting based on similar days and least square support vector machine publication-title: Power Syst. Prot. Control – volume: 33 start-page: 1087 year: 2018 ident: ref_36 article-title: Short-Term Residential Load Forecasting Based on Resident Behaviour Learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2688178 – volume: 134 start-page: 456 year: 2016 ident: ref_13 article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.08.099 – volume: 259 start-page: 114216 year: 2020 ident: ref_9 article-title: A hybrid deep learning model for short-term PV power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114216 – volume: 13 start-page: 55 year: 2018 ident: ref_26 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2018.2840738 – volume: 45 start-page: 2673 year: 1997 ident: ref_42 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 21 start-page: 100286 year: 2020 ident: ref_16 article-title: Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2019.100286 – ident: ref_47 – volume: 251 start-page: 113315 year: 2019 ident: ref_3 article-title: A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113315 – volume: 223 start-page: 807 year: 2018 ident: ref_23 article-title: Statistical monitoring of a wastewater treatment plant: A case study publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.06.087 – volume: 18 start-page: 7222 year: 2018 ident: ref_22 article-title: Detecting abnormal ozone measurements with a deep learning-based strategy publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2852001 – volume: 529 start-page: 484 year: 2016 ident: ref_32 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_27 doi: 10.1109/ICASSP.2013.6638947 – volume: 125 start-page: 103 year: 2014 ident: ref_1 article-title: Improving photovoltaics grid integration through short time forecasting and self-consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.045 – volume: 8 start-page: 1571 year: 2017 ident: ref_17 article-title: Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2017.2694340 – volume: 50 start-page: 101670 year: 2019 ident: ref_21 article-title: Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101670 – volume: 13 start-page: 281 year: 2012 ident: ref_51 article-title: Random Search for Hyper-Parameter Optimization publication-title: J. Mach. Learn. Res. – ident: ref_53 doi: 10.5772/intechopen.85999 – ident: ref_25 – volume: 140 start-page: 110121 year: 2020 ident: ref_28 article-title: Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110121 – ident: ref_50 – volume: 18 start-page: 5122 year: 2018 ident: ref_24 article-title: Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2831082 – ident: ref_34 doi: 10.3390/en11082163 – volume: 122 start-page: 40 year: 2017 ident: ref_52 article-title: Performance Data from the NIST Photovoltaic Arrays and Weather Station publication-title: J. Res. Natl. Inst. Stand. Technol. doi: 10.6028/jres.122.040 – volume: 4 start-page: 1 year: 2019 ident: ref_48 article-title: Modelling urban networks using Variational Autoencoders publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-019-0234-0 – ident: ref_10 doi: 10.1109/iEECON48109.2020.229517 – volume: 83 start-page: 100 year: 2015 ident: ref_11 article-title: Development of statistical time series models for solar power prediction publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.038 – volume: 35 start-page: 1351 year: 2020 ident: ref_14 article-title: A Novel Method for Hourly Electricity Demand Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2941277 – volume: 8 start-page: 147635 year: 2020 ident: ref_31 article-title: Early Detection of Parkinson’s Disease Using Deep Learning and Machine Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016062 – volume: 212 start-page: 112766 year: 2020 ident: ref_35 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112766 – volume: 6 start-page: 447 year: 1996 ident: ref_39 article-title: Neural networks for time series processing publication-title: Neural Netw. World – volume: 153 start-page: 409 year: 2017 ident: ref_38 article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.008 – ident: ref_33 doi: 10.3390/en12132538 |
| SSID | ssj0000913810 |
| Score | 2.5160954 |
| Snippet | The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids,... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 8400 |
| SubjectTerms | data-driven deep learning photovoltaic power forecasting RNN variational autoencoders |
| Title | Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach |
| URI | https://doaj.org/article/3ba547f2f26a4297bdab95d1f0e03233 |
| Volume | 10 |
| WOSCitedRecordID | wos000597135000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iHvQgPvFNDh5UCLZJmzTH9YUelIIP9FSStHEF2cpu9eCvd6aNUkHw4q00QymZyUy-dvJ9hOz5sjTSq5J5qy3DEsBMKiAZZkmmvbOea9uKTajr6-zhQec9qS_sCevogbuJOxLWpIny3HNpIHcqWxqr0zL2URUJLlqez0jpHphqc7COkbqqO5AnANfj_2BkKQA8E_0oQT2m_raknC-ShbAXpIPuHZbIVDVaJvM9hsBlshTW3oTuB4LogxXycTOETTO7haRKUVrTmQk2L9Pa03xYNzVkHAD8jt4gbKU56qDRvGN2BS_QtkuA3gNIDh8C6eCtqdnZCI-3j-npGBMgPa2qVxrYV5_oIFCPr5K787PbkwsWNBSYA2TYsDJVRgrvtPVGysjD3LvMqsR5mxktlUuFNsJYlESEtchjl8K45GVmjU9gdI1Mj-pRtU4oWCSCOyVLhQw0ThubZs5IuIxRXX2DHH5Na-ECwTjqXLwUADTQB0XPBxtk79v4tePV-N3sGP3zbYJk2O0NCJEihEjxV4hs_sdDtsgcR6gdc8b5Npluxm_VDpl1783zZLzbRt8umckvr_LHT-wK4pE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Forecasting+of+Photovoltaic+Solar+Power+Production+Using+Variational+Auto-Encoder+Driven+Deep+Learning+Approach&rft.jtitle=Applied+sciences&rft.au=Dairi%2C+Abdelkader&rft.au=Harrou%2C+Fouzi&rft.au=Sun%2C+Ying&rft.au=Khadraoui%2C+Sofiane&rft.date=2020-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=10&rft.issue=23&rft.spage=8400&rft_id=info:doi/10.3390%2Fapp10238400&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app10238400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |