Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network i...
Uloženo v:
| Vydáno v: | Journal of fluid mechanics Ročník 865; s. 281 - 302 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
25.04.2019
|
| Témata: | |
| ISSN: | 0022-1120, 1469-7645 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number (
$Re=100$
), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-1120 1469-7645 |
| DOI: | 10.1017/jfm.2019.62 |