Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control

We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fluid mechanics Ročník 865; s. 281 - 302
Hlavní autoři: Rabault, Jean, Kuchta, Miroslav, Jensen, Atle, Réglade, Ulysse, Cerardi, Nicolas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 25.04.2019
Témata:
ISSN:0022-1120, 1469-7645
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.62