Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control

We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fluid mechanics Ročník 865; s. 281 - 302
Hlavní autoři: Rabault, Jean, Kuchta, Miroslav, Jensen, Atle, Réglade, Ulysse, Cerardi, Nicolas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 25.04.2019
Témata:
ISSN:0022-1120, 1469-7645
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control.
AbstractList We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number (\(Re=100\)), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control.
We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is shown that, in a two-dimensional simulation of the Kármán vortex street at moderate Reynolds number ( $Re=100$ ), our artificial neural network is able to learn an active control strategy from experimenting with the mass flow rates of two jets on the sides of a cylinder. By interacting with the unsteady wake, the artificial neural network successfully stabilizes the vortex alley and reduces drag by approximately 8 %. This is performed while using small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate intersecting the cylinder cross-section once a new pseudo-periodic shedding regime is found. This opens the way to a new class of methods for performing active flow control.
Author Rabault, Jean
Réglade, Ulysse
Jensen, Atle
Kuchta, Miroslav
Cerardi, Nicolas
Author_xml – sequence: 1
  givenname: Jean
  orcidid: 0000-0002-7244-6592
  surname: Rabault
  fullname: Rabault, Jean
  email: jean.rblt@gmail.com
  organization: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
– sequence: 2
  givenname: Miroslav
  surname: Kuchta
  fullname: Kuchta, Miroslav
  organization: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
– sequence: 3
  givenname: Atle
  surname: Jensen
  fullname: Jensen, Atle
  organization: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
– sequence: 4
  givenname: Ulysse
  surname: Réglade
  fullname: Réglade, Ulysse
  organization: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
– sequence: 5
  givenname: Nicolas
  surname: Cerardi
  fullname: Cerardi, Nicolas
  organization: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
BookMark eNp1kE1LAzEURYNUsK2u_AMBlzI1yUxnJstS_IKCG10PmcxLmzpN6kvaor_eqa0Ioqu7Ofe9yxmQnvMOCLnkbMQZL26WZjUSjMtRLk5In2e5TIo8G_dInzEhEs4FOyODEJaM8ZTJok8-JhitsdqqljrY4FfEncfXQCMq66ChcYF-M1_QBmBNEawzHjWswEXagkJn3Zw2Nmi_BaTau4i-paFrR5hbCLTDqdLRboGa1u--kXNyalQb4OKYQ_Jyd_s8fUhmT_eP08ks0RkTMambvBR1ppWQXApW8NyU40xLyJUsy1SALk3N0_E4K-uGcS2b2ujcaFGzUhWpSYfk6nB3jf5tAyFWS79B172sBJepSHmasY7iB0qjDwHBVNpGFe1-q7JtxVm1V1x1iqu94ioXXef6V2eNdqXw_R86OdJqVaNt5vAz5C_-E4QKkZM
CitedBy_id crossref_primary_10_3390_en15041513
crossref_primary_10_1016_j_apor_2021_102676
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1038_s41598_023_36560_z
crossref_primary_10_1088_2632_2153_abdaf8
crossref_primary_10_1016_j_jcp_2020_109824
crossref_primary_10_1017_jfm_2022_1088
crossref_primary_10_3390_biomimetics10070427
crossref_primary_10_1016_j_euromechflu_2023_12_001
crossref_primary_10_1177_09544100241264049
crossref_primary_10_1063_5_0287427
crossref_primary_10_1063_5_0291803
crossref_primary_10_1002_gamm_202100007
crossref_primary_10_1088_1361_6501_ab82be
crossref_primary_10_1017_jfm_2023_775
crossref_primary_10_1016_j_engappai_2025_110749
crossref_primary_10_1016_j_flowmeasinst_2025_103039
crossref_primary_10_1016_j_ijheatfluidflow_2022_109010
crossref_primary_10_1073_pnas_2506351122
crossref_primary_10_1109_ACCESS_2022_3204968
crossref_primary_10_1063_5_0217692
crossref_primary_10_3390_s25165149
crossref_primary_10_1017_jfm_2024_333
crossref_primary_10_1007_s10409_021_01149_0
crossref_primary_10_1017_jfm_2020_1170
crossref_primary_10_1038_s41598_021_04204_9
crossref_primary_10_1080_14685248_2020_1797059
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_1016_j_ijheatfluidflow_2022_109008
crossref_primary_10_2514_1_J059447
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_icheatmasstransfer_2025_109203
crossref_primary_10_1063_5_0272178
crossref_primary_10_1016_j_combustflame_2023_113094
crossref_primary_10_1016_j_rineng_2023_101118
crossref_primary_10_1063_5_0223543
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1007_s42241_020_0027_z
crossref_primary_10_1007_s11012_024_01808_z
crossref_primary_10_1017_jfm_2024_77
crossref_primary_10_1016_j_jcp_2024_113070
crossref_primary_10_1063_5_0190452
crossref_primary_10_1109_TCST_2025_3539219
crossref_primary_10_1063_5_0281470
crossref_primary_10_3390_computation8010015
crossref_primary_10_1016_j_ijthermalsci_2023_108618
crossref_primary_10_1007_s42241_020_0026_0
crossref_primary_10_1016_j_ijthermalsci_2021_107058
crossref_primary_10_1017_jfm_2023_637
crossref_primary_10_1063_5_0220149
crossref_primary_10_1088_1674_4926_24110006
crossref_primary_10_1002_fld_5025
crossref_primary_10_1016_j_jocs_2023_102171
crossref_primary_10_3390_fluids8070208
crossref_primary_10_1017_jfm_2024_558
crossref_primary_10_1017_jfm_2022_1050
crossref_primary_10_1063_5_0218408
crossref_primary_10_1007_s10483_022_2940_9
crossref_primary_10_3389_frlct_2024_1328004
crossref_primary_10_3390_jpm13050787
crossref_primary_10_1007_s00366_024_02093_w
crossref_primary_10_1016_j_procs_2024_07_006
crossref_primary_10_1177_14680874231184002
crossref_primary_10_3390_aerospace8010018
crossref_primary_10_1017_jfm_2024_69
crossref_primary_10_1016_j_oceaneng_2021_110357
crossref_primary_10_1049_rpg2_13133
crossref_primary_10_1063_5_0253696
crossref_primary_10_1080_09544828_2024_2366686
crossref_primary_10_1016_j_ijheatfluidflow_2023_109200
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1016_j_jcp_2022_111271
crossref_primary_10_1155_2024_5535800
crossref_primary_10_1007_s00348_023_03587_x
crossref_primary_10_1063_5_0229981
crossref_primary_10_1016_j_jocs_2022_101884
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1088_1742_6596_2753_1_012022
crossref_primary_10_3390_act10110286
crossref_primary_10_1140_epje_s10189_023_00284_9
crossref_primary_10_3390_gels10060403
crossref_primary_10_1108_HFF_10_2023_0659
crossref_primary_10_1017_jfm_2025_27
crossref_primary_10_1016_j_oceaneng_2024_119116
crossref_primary_10_3390_act13120488
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1063_5_0220129
crossref_primary_10_1063_1_5132378
crossref_primary_10_2514_1_A36237
crossref_primary_10_1007_s11012_024_01830_1
crossref_primary_10_1098_rspa_2024_0222
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1063_5_0008889
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123655
crossref_primary_10_1038_s41467_025_56408_6
crossref_primary_10_1063_5_0153181
crossref_primary_10_1017_jfm_2023_76
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s10494_025_00697_w
crossref_primary_10_1007_s10409_021_01143_6
crossref_primary_10_2514_1_J064790
crossref_primary_10_1017_jfm_2019_469
crossref_primary_10_2514_1_J062801
crossref_primary_10_1016_j_engappai_2025_111125
crossref_primary_10_1017_jfm_2024_47
crossref_primary_10_3390_aerospace11080686
crossref_primary_10_1017_dce_2024_38
crossref_primary_10_1017_jfm_2025_10212
crossref_primary_10_1016_j_eswa_2021_115727
crossref_primary_10_1016_j_oceaneng_2022_111840
crossref_primary_10_1017_jfm_2024_525
crossref_primary_10_1063_5_0231805
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1016_j_jcp_2021_110317
crossref_primary_10_3390_en13225920
crossref_primary_10_1088_1742_6596_2767_3_032047
crossref_primary_10_1016_j_flowmeasinst_2021_102047
crossref_primary_10_1016_j_compfluid_2024_106191
crossref_primary_10_1016_j_physd_2024_134096
crossref_primary_10_1016_j_jweia_2023_105632
crossref_primary_10_3390_jmse9040376
crossref_primary_10_1016_j_oceaneng_2025_120989
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1016_j_buildenv_2025_113516
crossref_primary_10_3390_pr13041055
crossref_primary_10_1016_j_ijthermalsci_2024_109547
crossref_primary_10_1109_TGRS_2019_2933054
crossref_primary_10_1016_j_geoen_2023_211925
crossref_primary_10_1016_j_oceaneng_2024_118138
crossref_primary_10_1109_TAP_2021_3096994
crossref_primary_10_1016_j_ijmecsci_2025_110517
crossref_primary_10_3390_cryst10090791
crossref_primary_10_1016_j_compbiomed_2024_108383
crossref_primary_10_1016_j_jcp_2025_113893
crossref_primary_10_1088_1742_6596_1934_1_012022
crossref_primary_10_1016_j_eswa_2022_119192
crossref_primary_10_1017_jfm_2024_503
crossref_primary_10_1073_pnas_2004939117
crossref_primary_10_1063_5_0262891
crossref_primary_10_1007_s10494_025_00642_x
crossref_primary_10_1016_j_engappai_2025_110463
crossref_primary_10_1186_s43251_021_00042_x
crossref_primary_10_1016_j_expthermflusci_2025_111557
crossref_primary_10_1016_j_jcp_2025_114194
crossref_primary_10_1016_j_ijheatfluidflow_2023_109139
crossref_primary_10_1016_j_jcp_2023_112436
crossref_primary_10_1038_s41598_023_34007_z
crossref_primary_10_1016_j_ijheatfluidflow_2022_109094
crossref_primary_10_1007_s42791_024_00067_z
crossref_primary_10_1016_j_ast_2025_110347
crossref_primary_10_1371_journal_pone_0243107
crossref_primary_10_1017_jfm_2021_301
crossref_primary_10_1109_MCSE_2023_3264340
crossref_primary_10_1007_s10494_024_00619_2
crossref_primary_10_1063_5_0219476
crossref_primary_10_1002_nme_7624
crossref_primary_10_1016_j_oceaneng_2024_116668
crossref_primary_10_1103_PhysRevFluids_8_064603
crossref_primary_10_1016_j_compfluid_2021_104973
crossref_primary_10_1155_2024_9411326
crossref_primary_10_1038_s44172_025_00446_x
crossref_primary_10_1007_s10409_021_01145_4
crossref_primary_10_1016_j_jweia_2021_104600
crossref_primary_10_1063_5_0266100
crossref_primary_10_1103_8t52_mtb9
crossref_primary_10_1017_jfm_2023_1096
crossref_primary_10_1088_1361_6501_ac93a4
crossref_primary_10_1063_5_0213256
crossref_primary_10_1063_5_0237682
crossref_primary_10_1017_jfm_2023_147
crossref_primary_10_3390_jmse12091597
crossref_primary_10_1063_5_0074724
crossref_primary_10_1017_dce_2023_28
crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_1016_j_jcp_2020_110080
crossref_primary_10_1016_j_wroa_2025_100313
crossref_primary_10_1007_s11071_025_10953_3
crossref_primary_10_3390_pr9091620
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1016_j_renene_2025_122887
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125561
crossref_primary_10_1017_jfm_2019_814
crossref_primary_10_1016_j_ijheatfluidflow_2025_109913
crossref_primary_10_1017_jfm_2023_28
crossref_primary_10_1007_s42241_025_0009_2
crossref_primary_10_1109_ACCESS_2024_3512873
crossref_primary_10_1016_j_applthermaleng_2023_121919
crossref_primary_10_13111_2066_8201_2023_15_4_12
crossref_primary_10_1016_j_aei_2022_101612
crossref_primary_10_1016_j_autcon_2020_103424
crossref_primary_10_1016_j_buildenv_2024_111357
crossref_primary_10_1103_PhysRevE_104_014210
crossref_primary_10_1063_5_0281974
crossref_primary_10_1007_s40997_023_00632_2
crossref_primary_10_1063_5_0142198
crossref_primary_10_3390_fluids10050137
crossref_primary_10_1109_LCSYS_2022_3183526
crossref_primary_10_1063_5_0276738
crossref_primary_10_1016_j_ast_2021_107132
crossref_primary_10_1061__ASCE_EM_1943_7889_0001967
crossref_primary_10_1017_jfm_2021_974
crossref_primary_10_3390_fluids7020062
crossref_primary_10_1007_s42241_020_0028_y
crossref_primary_10_1007_s00162_020_00518_y
crossref_primary_10_3390_app14020859
crossref_primary_10_1016_j_cpc_2025_109748
crossref_primary_10_1017_jfm_2022_1043
crossref_primary_10_1016_j_engappai_2025_111873
crossref_primary_10_1063_5_0278006
crossref_primary_10_1007_s10494_024_00632_5
crossref_primary_10_3390_fluids7020056
crossref_primary_10_1007_s00162_020_00520_4
crossref_primary_10_1016_j_ast_2024_109424
crossref_primary_10_1016_j_engappai_2022_105106
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1177_14680874211019345
crossref_primary_10_1038_s41598_023_35257_7
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1016_j_oceaneng_2024_118089
crossref_primary_10_3390_act11120359
crossref_primary_10_1007_s10514_021_10003_y
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1016_j_ijheatfluidflow_2022_108997
crossref_primary_10_1063_5_0066077
crossref_primary_10_1002_we_2852
crossref_primary_10_1146_annurev_fluid_010719_060214
crossref_primary_10_1134_S001546282560066X
crossref_primary_10_3390_fluids9090216
crossref_primary_10_3390_e23080941
crossref_primary_10_1016_j_matcom_2022_02_016
crossref_primary_10_1007_s00158_024_03755_5
crossref_primary_10_1063_5_0097241
crossref_primary_10_1109_TASE_2023_3315549
crossref_primary_10_1016_j_physrep_2024_05_004
crossref_primary_10_1063_5_0284388
crossref_primary_10_1017_jfm_2022_1020
crossref_primary_10_1140_epjp_s13360_023_04852_y
crossref_primary_10_3934_era_2025144
crossref_primary_10_1016_j_oceaneng_2025_121453
crossref_primary_10_1016_j_ijheatfluidflow_2025_109950
crossref_primary_10_1016_j_jcp_2023_112018
crossref_primary_10_1016_j_oceaneng_2022_111436
crossref_primary_10_1016_j_ast_2024_109324
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124788
crossref_primary_10_1016_j_applthermaleng_2023_120621
crossref_primary_10_1063_5_0275415
crossref_primary_10_1016_j_oceaneng_2023_115775
crossref_primary_10_1063_5_0263211
crossref_primary_10_1007_s12043_024_02794_3
crossref_primary_10_1063_5_0271616
crossref_primary_10_1016_j_atech_2024_100403
crossref_primary_10_1016_j_ast_2023_108737
crossref_primary_10_1088_1873_7005_ac4f2d
crossref_primary_10_1016_j_oceaneng_2024_118531
crossref_primary_10_1038_s41598_021_01937_5
crossref_primary_10_1007_s11004_022_10033_x
crossref_primary_10_1016_j_rse_2024_114425
crossref_primary_10_1088_1755_1315_867_1_012035
crossref_primary_10_1007_s00162_023_00641_6
crossref_primary_10_1017_jfm_2021_1045
Cites_doi 10.1007/978-3-642-23099-8
10.1017/jfm.2015.95
10.1145/992200.992206
10.1098/rsta.2010.0364
10.1017/jfm.2012.223
10.1098/rsta.2010.0201
10.1007/s00348-017-2382-2
10.1088/1361-6501/aa8b87
10.1109/TVCG.2016.2598838
10.1115/1.4033345
10.1006/jcss.1995.1013
10.1073/pnas.1800923115
10.1115/1.4031175
10.1017/S0022112009991418
10.1038/nature14236
10.1016/0021-9991(79)90088-3
10.1002/fld.4416
10.1002/nme.2579
10.1177/0278364913495721
10.1007/s00162-016-0392-y
10.1016/j.neunet.2014.09.003
10.1007/978-3-642-23099-8_21
10.1098/rsta.2010.0374
10.1103/PhysRevLett.96.064501
10.1063/1.869789
10.1103/PhysRevLett.109.074501
10.1017/S0022112008002073
10.1016/0893-6080(89)90020-8
10.1017/jfm.2016.803
10.1038/nature14539
10.1007/978-3-322-89849-4_39
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.62
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (subscription)
Engineering Database (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate ANNs discover control strategies for flow control
J. Rabault, M. Kuchta, A. Jensen, U. Réglade and N. Cerardi
EISSN 1469-7645
EndPage 302
ExternalDocumentID 10_1017_jfm_2019_62
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABUFD
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEHGV
AEUYN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c402t-bd682b4ca291920716f854c9e6a98832ec8fb135548bd01c9dbfc6fc2b08a73f3
IEDL.DBID M7S
ISICitedReferencesCount 383
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460815000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sat Aug 16 10:42:01 EDT 2025
Sat Nov 29 04:24:19 EST 2025
Tue Nov 18 22:18:18 EST 2025
Wed Mar 13 05:36:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords control theory
drag reduction
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-bd682b4ca291920716f854c9e6a98832ec8fb135548bd01c9dbfc6fc2b08a73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7244-6592
OpenAccessLink http://hdl.handle.net/10852/67610
PQID 2193231340
PQPubID 34769
PageCount 22
ParticipantIDs proquest_journals_2193231340
crossref_citationtrail_10_1017_jfm_2019_62
crossref_primary_10_1017_jfm_2019_62
cambridge_journals_10_1017_jfm_2019_62
PublicationCentury 2000
PublicationDate 2019-04-25
PublicationDateYYYYMMDD 2019-04-25
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1989; 2
2017; 814
1995; 50
2006; 96
2015; 521
2017; 28
2008; 608
2010; 368
2017; 23
2016; 30
1979; 30
2018; 86
2012; 703
2012; 109
2011; 369
2015; 67
2004; 30
2009; 79
2013; 32
2017; 58
2015; 61
2015; 770
2015; 518
2018
2009; 641
1998; 10
2016; 68
S0022112019000624_r5
S0022112019000624_r4
S0022112019000624_r6
S0022112019000624_r9
Abadi (S0022112019000624_r1) 2016; 16
Duan (S0022112019000624_r7) 2016
S0022112019000624_r24
S0022112019000624_r25
S0022112019000624_r22
S0022112019000624_r44
S0022112019000624_r23
S0022112019000624_r20
S0022112019000624_r42
S0022112019000624_r40
Goodfellow (S0022112019000624_r15) 2016; 1
S0022112019000624_r41
S0022112019000624_r28
S0022112019000624_r29
S0022112019000624_r26
S0022112019000624_r27
Krizhevsky (S0022112019000624_r21) 2012
Vernet (S0022112019000624_r43) 2014
Duriez (S0022112019000624_r8) 2016
He (S0022112019000624_r18) 2016
Gu (S0022112019000624_r16) 2016
S0022112019000624_r13
S0022112019000624_r35
S0022112019000624_r36
S0022112019000624_r14
S0022112019000624_r33
S0022112019000624_r11
S0022112019000624_r34
S0022112019000624_r12
S0022112019000624_r31
S0022112019000624_r32
S0022112019000624_r10
S0022112019000624_r30
S0022112019000624_r19
S0022112019000624_r17
S0022112019000624_r39
S0022112019000624_r3
S0022112019000624_r37
S0022112019000624_r38
S0022112019000624_r2
References_xml – year: 2018
  article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 79
  start-page: 1309
  issue: 11
  year: 2009
  end-page: 1331
  article-title: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities
  publication-title: Intl J. Numer. Meth. Engng
– volume: 30
  start-page: 76
  issue: 1
  year: 1979
  end-page: 95
  article-title: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows
  publication-title: J. Comput. Phys.
– volume: 58
  start-page: 103
  issue: 8
  year: 2017
  article-title: Drag reduction of a car model by linear genetic programming control
  publication-title: Exp. Fluids
– volume: 369
  start-page: 1476
  issue: 1940
  year: 2011
  end-page: 1494
  article-title: Some aspects of aerodynamic flow control using synthetic-jet actuation
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 96
  issue: 6
  year: 2006
  article-title: Delaying transition to turbulence by a passive mechanism
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 1238
  issue: 11
  year: 2013
  end-page: 1274
  article-title: Reinforcement learning in robotics: a survey
  publication-title: Intl J. Robotics Res.
– volume: 68
  issue: 2
  year: 2016
  article-title: Linear closed-loop control of fluid instabilities and noise-induced perturbations: a review of approaches and tools
  publication-title: Appl. Mech. Rev.
– volume: 50
  start-page: 132
  issue: 1
  year: 1995
  end-page: 150
  article-title: On the computational power of neural nets
  publication-title: J. Comput. Syst. Sci.
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 608
  start-page: 161
  year: 2008
  end-page: 196
  article-title: Feedback shear layer control for bluff body drag reduction
  publication-title: J. Fluid Mech.
– volume: 770
  start-page: 442
  year: 2015
  end-page: 457
  article-title: Closed-loop separation control using machine learning
  publication-title: J. Fluid Mech.
– volume: 641
  start-page: 1
  year: 2009
  end-page: 50
  article-title: Closed-loop control of an open cavity flow using reduced-order models
  publication-title: J. Fluid Mech.
– volume: 86
  start-page: 255
  issue: 4
  year: 2018
  end-page: 268
  article-title: Model identification of reduced order fluid dynamics systems using deep learning
  publication-title: Intl J. Numer. Meth. Fluids
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 109
  issue: 7
  year: 2012
  article-title: Revival of classical vortex generators now for transition delay
  publication-title: Phys. Rev. Lett.
– volume: 369
  start-page: 1382
  issue: 1940
  year: 2011
  end-page: 1395
  article-title: On active control of laminar–turbulent transition on two-dimensional wings
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 67
  issue: 5
  year: 2015
  article-title: Closed-loop turbulence control: progress and challenges
  publication-title: Appl. Mech. Rev.
– volume: 28
  issue: 12
  year: 2017
  article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept
  publication-title: Meas. Sci. Technol.
– volume: 23
  start-page: 101
  issue: 1
  year: 2017
  end-page: 110
  article-title: Visualizing the hidden activity of artificial neural networks
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 30
  start-page: 497
  issue: 6
  year: 2016
  end-page: 510
  article-title: A statistical learning strategy for closed-loop control of fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 703
  start-page: 326
  year: 2012
  end-page: 362
  article-title: Closed-loop control of unsteadiness over a rounded backward-facing step
  publication-title: J. Fluid Mech.
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 368
  start-page: 4775
  issue: 1929
  year: 2010
  end-page: 4806
  article-title: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
– volume: 10
  start-page: 1049
  issue: 5
  year: 1998
  end-page: 1051
  article-title: A large-scale control strategy for drag reduction in turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 30
  start-page: 196
  issue: 2
  year: 2004
  end-page: 199
  article-title: Algorithm 832: UMFPACK v4.3 – an unsymmetric-pattern multifrontal method
  publication-title: ACM Trans. Math. Softw.
– ident: S0022112019000624_r25
– ident: S0022112019000624_r26
  doi: 10.1007/978-3-642-23099-8
– ident: S0022112019000624_r11
  doi: 10.1017/jfm.2015.95
– start-page: 1097
  volume-title: Adv. Neural Inform. Proc. Syst.
  year: 2012
  ident: S0022112019000624_r21
– ident: S0022112019000624_r5
  doi: 10.1145/992200.992206
– ident: S0022112019000624_r9
  doi: 10.1098/rsta.2010.0364
– volume: 16
  start-page: 265
  volume-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16)
  year: 2016
  ident: S0022112019000624_r1
– ident: S0022112019000624_r2
  doi: 10.1017/jfm.2012.223
– ident: S0022112019000624_r6
  doi: 10.1098/rsta.2010.0201
– ident: S0022112019000624_r24
  doi: 10.1007/s00348-017-2382-2
– ident: S0022112019000624_r30
  doi: 10.1088/1361-6501/aa8b87
– ident: S0022112019000624_r31
  doi: 10.1109/TVCG.2016.2598838
– ident: S0022112019000624_r40
  doi: 10.1115/1.4033345
– ident: S0022112019000624_r36
– ident: S0022112019000624_r39
  doi: 10.1006/jcss.1995.1013
– volume-title: Machine Learning Control – Taming Nonlinear Dynamics and Turbulence
  year: 2016
  ident: S0022112019000624_r8
– ident: S0022112019000624_r42
  doi: 10.1073/pnas.1800923115
– start-page: 1329
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: S0022112019000624_r7
– ident: S0022112019000624_r4
  doi: 10.1115/1.4031175
– ident: S0022112019000624_r3
  doi: 10.1017/S0022112009991418
– ident: S0022112019000624_r28
  doi: 10.1038/nature14236
– start-page: 2829
  volume-title: Intl Conference on Machine Learning
  year: 2016
  ident: S0022112019000624_r16
– ident: S0022112019000624_r14
  doi: 10.1016/0021-9991(79)90088-3
– ident: S0022112019000624_r44
  doi: 10.1002/fld.4416
– ident: S0022112019000624_r12
  doi: 10.1002/nme.2579
– volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: S0022112019000624_r15
– ident: S0022112019000624_r20
  doi: 10.1177/0278364913495721
– ident: S0022112019000624_r17
  doi: 10.1007/s00162-016-0392-y
– ident: S0022112019000624_r34
  doi: 10.1016/j.neunet.2014.09.003
– ident: S0022112019000624_r41
  doi: 10.1007/978-3-642-23099-8_21
– ident: S0022112019000624_r32
– ident: S0022112019000624_r13
  doi: 10.1098/rsta.2010.0374
– ident: S0022112019000624_r10
  doi: 10.1103/PhysRevLett.96.064501
– ident: S0022112019000624_r35
  doi: 10.1063/1.869789
– ident: S0022112019000624_r37
– start-page: 1
  volume-title: First International Conference in Numerical and Experimental Aerodynamics of Road Vehicles and Trains (Aerovehicles 1), Bordeaux, France
  year: 2014
  ident: S0022112019000624_r43
– ident: S0022112019000624_r38
  doi: 10.1103/PhysRevLett.109.074501
– start-page: 770
  volume-title: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
  year: 2016
  ident: S0022112019000624_r18
– ident: S0022112019000624_r29
  doi: 10.1017/S0022112008002073
– ident: S0022112019000624_r19
  doi: 10.1016/0893-6080(89)90020-8
– ident: S0022112019000624_r22
  doi: 10.1017/jfm.2016.803
– ident: S0022112019000624_r23
  doi: 10.1038/nature14539
– ident: S0022112019000624_r27
– ident: S0022112019000624_r33
  doi: 10.1007/978-3-322-89849-4_39
SSID ssj0013097
Score 2.6949625
Snippet We present the first application of an artificial neural network trained through a deep reinforcement learning agent to perform active flow control. It is...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Active control
Actuation
Algorithms
Artificial neural networks
Computer simulation
Cylinders
Drag reduction
Flow control
Flow rates
Fluid dynamics
Fluid flow
Fluid mechanics
JFM Papers
Mass
Mass flow rate
Neural networks
New class
Reinforcement
Reynolds number
Stability
Swimming
Title Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
URI https://www.cambridge.org/core/product/identifier/S0022112019000624/type/journal_article
https://www.proquest.com/docview/2193231340
Volume 865
WOSCitedRecordID wos000460815000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UVdCDj1XxueQgHoRqmr6Sk6i4eFoXHyBeSpMmosjuul0V_PVmsqmrIF68pIdO09JJJl-SyfcB7Jk4zGgpqJ2bUFsILgNppwmBtGMtzZiJFS-d2ETW6fC7O9H1C26VT6usY6IL1GVf4Rr5EUOkEYVRTI8HLwGqRuHuqpfQmIYGsiQwl7p3PdlFoCKr2cItrqD-fB5SRj8ZPIYeikOUyZmwKvwcnX4GZzfitJf--63LsOixJjkZN44VmNK9Jix53El8r66asPCNlLAJcy4pVFWr8IFPjhkmCPJeuovLGq-Ik5awtXidH1JqPSBD7XhYlVtyJF6Q4oHgyV_MFCU-L55Uo5qgglhzUriYS8xz_702WYPb9vnN2UXgtRoCZWego0CWKWcyVgUTFjNa3JIansRK6LQQ3EYNrbiRIYIbLksaKlFKo1KjmKS8yCITrcNMr9_TG0AiLhNWKI7gKhaS8TSSiRZxXKg0tfhyE_a__JX7Hlfl42y1LLeOzdGxeco24aB2Zq484zn-neffjfe-jAdjoo_fzXZql0_ePfH31t-3t2Ee68HdKJbswMxo-Kp3YVa9jR6rYQsap-ed7lXLNmJ26cpuyzVoW3aT-0_7NP1p
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BTtwwEB0tUAQcoCytgNLWB-ihUorjeBP7gCpEi0DQVaWCxC2NHbuiWu0um4UV_ah-Ix7HYYuEuHHoJTlk4kjOy8w4nnkPYNvyOKOlpG5tQt1BChUpt0yIlIu1NGOWa1F6sYms2xUXF_J7C_42vTBYVtn4RO-oy4HGf-S7DDONJE44_Ty8ilA1CndXGwmNGhYn5nbilmzV3vEX9353GDv8enZwFAVVgUi7tdI4UmUqmOK6YNJlNy7CplZ0uJYmLaRw-DZaWBVjGBaqpLGWpbI6tZopKoossYkbdwbmOHp_Xyr4Y7prQWXWsJO7PIaGfkCkqP5tse09lp9QlmfK4vAwGj4MBj7CHa78b3PzEpZDLk32a_CvQsv027AS8moSvFbVhqV_SBfbMO-LXnW1Bn_wzppBgyCvpz_5qviKeOkMN0rQMSKlMUMyMp5nVvtfqiQIbvwi2NmMlbAk1P2TatwQcBBnTgofU4jtDSaNySs4f5aZeQ2z_UHfrANJhOqwQgtMHrlUTKSJ6hjJeaHT1OXPG_DhHh958ChVXlfjZbkDUo5AylO2AR8b8OQ6MLrj7PQeN96-Nx7WRCaPm201EJs-e4qvzacvv4eFo7Nvp_npcffkDSzimLjzxjpbMDseXZu38ELfjC-r0Tv_4RD4-dxovAM8jlY-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+trained+through+deep+reinforcement+learning+discover+control+strategies+for+active+flow+control&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Rabault%2C+Jean&rft.au=Kuchta%2C+Miroslav&rft.au=Jensen%2C+Atle&rft.au=Ulysse+R%C3%A9glade&rft.date=2019-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=865&rft.spage=281&rft.epage=302&rft_id=info:doi/10.1017%2Fjfm.2019.62
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon