On the Dual Formulation of Boosting Algorithms

We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 32; číslo 12; s. 2216 - 2231
Hlavní autori: Shen, Chunhua, Li, Hanxi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Los Alamitos, CA IEEE 01.12.2010
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, ℓ 1 -norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
AbstractList We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of \ell_1-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, \ell_1-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, ℓ 1 -norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.
Author Hanxi Li
Chunhua Shen
Author_xml – sequence: 1
  givenname: Chunhua
  surname: Shen
  fullname: Shen, Chunhua
  email: chunhua.shen@nicta.com.au
  organization: NICTA, Canberra Research Laboratory, Canberra, Australia. chunhua.shen@nicta.com.au
– sequence: 2
  givenname: Hanxi
  surname: Li
  fullname: Li, Hanxi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23418863$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20975119$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmCrApWF9thTpSpShXrKdsYfiX1cKAtIIDgsZ8tJ7MUoiamdHPrvm2W3VFoJcbIsPePxzHtMDvrQW0K-IMwRQf1c3S9ur-cUpjsvP5AZKqZyJpg6IDPAguZSUnlEjlN6AkAugH0kRxRUKRDVjMzv-mx4tNmv0bTZMsRubM3gQ58Fl52FkAbfr7NFuw7RD49d-kQOnWmT_bw7T8jD8mJ1fpXf3F1eny9u8poDHfIKhS1ZLZoKrHCspAahqqTljWso54XlzgCUQnJVYE1pxbgBqhonmSi5Q3ZCfmzffY7h92jToDufatu2prdhTHoq5FxNY74rywIoAodikt_35FMYYz-NoRHYtBspYNP5206NVWcb_Rx9Z-If_W9lEzjdAZNq07po-tqn_45xlLLYfCzfujqGlKJ1rwRBb6LTL9HpTXSal5Nne772w0sWQzS-fbPq67bKW2tfOwjOKCrK_gKf4qCY
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TNNLS_2011_2178324
crossref_primary_10_1109_JSAC_2024_3459028
crossref_primary_10_1109_TWC_2024_3409352
crossref_primary_10_1109_TWC_2025_3543894
crossref_primary_10_1109_TPAMI_2011_240
crossref_primary_10_1016_j_knosys_2020_106116
crossref_primary_10_1016_j_patcog_2013_07_021
crossref_primary_10_1016_j_patcog_2017_11_006
crossref_primary_10_1016_j_neunet_2013_07_006
crossref_primary_10_1109_TCYB_2016_2623900
crossref_primary_10_1109_TWC_2023_3270925
crossref_primary_10_1109_TCOMM_2024_3395295
crossref_primary_10_1109_LWC_2022_3221526
crossref_primary_10_1109_TIP_2017_2718189
crossref_primary_10_1016_j_patcog_2024_110586
crossref_primary_10_1109_TNNLS_2013_2281214
crossref_primary_10_1016_j_imavis_2014_04_009
crossref_primary_10_1016_j_cma_2021_114121
crossref_primary_10_1109_LWC_2023_3285797
crossref_primary_10_1016_j_patrec_2013_12_006
crossref_primary_10_1007_s11263_013_0608_1
crossref_primary_10_1016_j_asoc_2019_04_003
crossref_primary_10_1007_s13042_024_02169_5
crossref_primary_10_1155_2013_379718
crossref_primary_10_1016_j_patcog_2015_12_011
crossref_primary_10_1016_j_ijleo_2015_08_153
crossref_primary_10_1109_TWC_2022_3205480
crossref_primary_10_1109_TVT_2025_3525836
crossref_primary_10_3390_e18120442
crossref_primary_10_1145_3451392
crossref_primary_10_1016_j_ins_2014_06_017
crossref_primary_10_1109_JSAC_2024_3460073
crossref_primary_10_1016_j_bspc_2024_107447
crossref_primary_10_1109_LSP_2016_2606661
crossref_primary_10_1007_s11263_016_0984_4
crossref_primary_10_1007_s11063_020_10191_1
crossref_primary_10_1007_s13042_021_01296_7
crossref_primary_10_1371_journal_pone_0159945
crossref_primary_10_1016_j_ins_2013_06_012
crossref_primary_10_1109_TPAMI_2014_2315792
crossref_primary_10_1109_TCOMM_2022_3227284
crossref_primary_10_1109_TNNLS_2013_2282369
crossref_primary_10_1109_TAES_2024_3488687
crossref_primary_10_1109_TIP_2010_2053548
crossref_primary_10_1109_TWC_2023_3254538
crossref_primary_10_1109_TCOMM_2022_3189386
crossref_primary_10_3390_electronics11193154
crossref_primary_10_1007_s10994_012_5324_5
crossref_primary_10_1016_j_neucom_2017_12_053
crossref_primary_10_1016_j_procs_2021_09_141
crossref_primary_10_1109_TKDE_2019_2894148
crossref_primary_10_1109_TNNLS_2022_3190198
crossref_primary_10_1016_j_neunet_2016_05_006
crossref_primary_10_1007_s10994_014_5434_3
Cites_doi 10.1007/978-0-387-21579-2_9
10.1006/jcss.1997.1504
10.1145/1102351.1102476
10.1162/089976698300017197
10.1007/s10994-010-5173-z
10.1109/AFGR.2004.1301573
10.1145/307400.307424
10.7551/mitpress/1120.003.0062
10.1007/BF01016429
10.1214/009053607000000785
10.1017/CBO9780511804441
10.1023/A:1010852229904
10.1023/B:VISI.0000013087.49260.fb
10.1109/TPAMI.2002.1033211
10.7551/mitpress/1113.003.0017
10.1198/016214505000000907
10.1145/1143844.1143939
10.1214/aos/1016120463
10.1023/A:1012470815092
10.1007/3-540-36434-X_4
10.1287/opre.1050.0234
10.1145/1143844.1143970
10.1214/aos/1015362183
10.1006/game.1999.0738
10.1023/A:1013912006537
10.1162/089976699300016106
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TPAMI.2010.47
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 2231
ExternalDocumentID 2724110771
20975119
23418863
10_1109_TPAMI_2010_47
5432192
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c402t-b15e73c5db0e5f372a10bb8e4dfd2446e4fa007584961c22b34a029df83574f13
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283558700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 05:42:14 EDT 2025
Wed Oct 01 13:04:50 EDT 2025
Mon Jun 30 03:27:43 EDT 2025
Mon Jul 21 05:33:05 EDT 2025
Mon Jul 21 09:15:09 EDT 2025
Sat Nov 29 08:07:56 EST 2025
Tue Nov 18 22:12:50 EST 2025
Wed Aug 27 02:47:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Data analysis
Linear programming
LPBoost
Optimization
Variance
Aggregate model
Lagrange duality
AdaBoost
Supervised learning
Classification
Convergence rate
LogitBoost
entropy maximization
Numerical convergence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-b15e73c5db0e5f372a10bb8e4dfd2446e4fa007584961c22b34a029df83574f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20975119
PQID 1030148501
PQPubID 85458
PageCount 16
ParticipantIDs proquest_miscellaneous_849449353
proquest_miscellaneous_760210406
pascalfrancis_primary_23418863
crossref_primary_10_1109_TPAMI_2010_47
pubmed_primary_20975119
ieee_primary_5432192
crossref_citationtrail_10_1109_TPAMI_2010_47
proquest_journals_1030148501
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2010
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Rudin (ref3) 2004; 5
ref12
ref34
ref15
ref37
ref14
ref36
ref11
Feller (ref31) 1968; 1
ref33
ref10
Sonnenburg (ref35) 2006; 7
ref1
ref17
ref39
ref16
ref38
ref19
(ref28) 2008
ref18
(ref27) 2008
Rätsch (ref32) 2001; 42
Grove (ref9)
ref24
ref26
ref20
ref41
ref22
ref21
Chang (ref25) 2001
Rätsch (ref8) 2005; 6
Mease (ref5) 2008; 9
Domingo (ref7)
ref29
Kallenberg (ref30) 1997
Schapire (ref2) 1998; 26
Rifkin (ref23) 2007; 8
Leskovec (ref40)
ref4
ref6
References_xml – ident: ref16
  doi: 10.1007/978-0-387-21579-2_9
– volume-title: Foundations of Modern Probability
  year: 1997
  ident: ref30
– year: 2001
  ident: ref25
  article-title: LIBSVM: A Library for Support Vector Machines
– ident: ref1
  doi: 10.1006/jcss.1997.1504
– ident: ref33
  doi: 10.1145/1102351.1102476
– volume: 26
  start-page: 1651
  issue: 5
  year: 1998
  ident: ref2
  article-title: Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
  publication-title: Annals of Statistics
– ident: ref39
  doi: 10.1162/089976698300017197
– volume: 6
  start-page: 2131
  year: 2005
  ident: ref8
  article-title: Efficient Margin Maximizing with Boosting
  publication-title: J. Machine Learning Research
– ident: ref24
  doi: 10.1007/s10994-010-5173-z
– ident: ref36
  doi: 10.1109/AFGR.2004.1301573
– ident: ref18
  doi: 10.1145/307400.307424
– ident: ref19
  doi: 10.7551/mitpress/1120.003.0062
– start-page: 456
  volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref40
  article-title: Linear Programming Boosting for Uneven Datasets
– start-page: 692
  volume-title: Proc. Nat’l Conf. Artificial Intelligence
  ident: ref9
  article-title: Boosting in the Limit: Maximizing the Margin of Learned Ensembles
– volume: 8
  start-page: 441
  year: 2007
  ident: ref23
  article-title: Value Regularization and Fenchel Duality
  publication-title: J. Machine Learning Research
– ident: ref29
  doi: 10.1007/BF01016429
– ident: ref4
  doi: 10.1214/009053607000000785
– ident: ref21
  doi: 10.1017/CBO9780511804441
– year: 2008
  ident: ref28
  article-title: CPLEX 11.1
– ident: ref41
  doi: 10.1023/A:1010852229904
– year: 2008
  ident: ref27
  article-title: The MOSEK Optimization Toolbox for Matlab Manual, Version 5.0, Revision 93
– ident: ref38
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref14
  doi: 10.1109/TPAMI.2002.1033211
– ident: ref20
  doi: 10.7551/mitpress/1113.003.0017
– ident: ref26
  doi: 10.1198/016214505000000907
– ident: ref12
  doi: 10.1145/1143844.1143939
– ident: ref6
  doi: 10.1214/aos/1016120463
– ident: ref10
  doi: 10.1023/A:1012470815092
– volume: 42
  start-page: 287
  issue: 3
  volume-title: Machine Learning
  year: 2001
  ident: ref32
  article-title: Soft Margins for AdaBoost
– ident: ref15
  doi: 10.1007/3-540-36434-X_4
– ident: ref34
  doi: 10.1287/opre.1050.0234
– ident: ref37
  doi: 10.1145/1143844.1143970
– ident: ref13
  doi: 10.1214/aos/1015362183
– ident: ref22
  doi: 10.1006/game.1999.0738
– volume: 7
  start-page: 1531
  year: 2006
  ident: ref35
  article-title: Large Scale Multiple Kernel Learning
  publication-title: J. Machine Learning Research
– ident: ref17
  doi: 10.1023/A:1013912006537
– volume: 1
  volume-title: Introduction to Probability Theory and its Applications
  year: 1968
  ident: ref31
– volume: 9
  start-page: 131
  year: 2008
  ident: ref5
  article-title: Evidence Contrary to the Statistical View of Boosting
  publication-title: J. Machine Learning Research
– start-page: 180
  volume-title: Proc. Ann. Conf. Computational Learning Theory
  ident: ref7
  article-title: MadaBoost: A Modification of AdaBoost
– volume: 5
  start-page: 1557
  year: 2004
  ident: ref3
  article-title: The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins
  publication-title: J. Machine Learning Research
– ident: ref11
  doi: 10.1162/089976699300016106
SSID ssj0014503
Score 2.3643906
Snippet We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin...
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin...
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of \ell_1-norm-regularized AdaBoost, LogitBoost, and soft-margin...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2216
SubjectTerms AdaBoost
Algorithms
Applied sciences
Artificial intelligence
Australia
Boosting
Classification
Computer science; control theory; systems
Construction
Convergence
Data processing. List processing. Character string processing
Entropy
entropy maximization
Exact sciences and technology
Fasteners
Formulations
Lagrange duality
Lagrangian functions
Linear programming
LogitBoost
LPBoost
Machine learning algorithms
Maximization
Memory organisation. Data processing
Optimization
Software
Support vector machine classification
Support vector machines
Title On the Dual Formulation of Boosting Algorithms
URI https://ieeexplore.ieee.org/document/5432192
https://www.ncbi.nlm.nih.gov/pubmed/20975119
https://www.proquest.com/docview/1030148501
https://www.proquest.com/docview/760210406
https://www.proquest.com/docview/849449353
Volume 32
WOSCitedRecordID wos000283558700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VigMcKG35SFtWPiBOTevEduwct4VVkaD0UNDeItuxoVJJ0GaX39-xk01biT1wi2RHtsYzmTeZ8TyA9yx30jClU2uVSbmkAm1OstS5wG1RoseIzap_fJGXl2o-L6-24Hi8C-Oci8Vn7iQ8xlx-3dpV-FV2KjhDA8MP7hMpi_6u1pgx4CKyICOCQQvHMOK-n-bp9dX06-e-iosH0r2cljKkzx65ositEiojdYfC8T2rxWbYGd3PbOf_Nv4SXgwwk0x7vdiFLdfswc6awoEMFr0Hzx_0I9yHk28NQUBIPq7w3Rmi2YHbi7SenLVtF0qkyfT2Z7u4Wf763b2C77NP1-cX6UCokFoME5epyYSTzIraUCc8k7nOqDHK8drX6OYLx70OGELxsshsnhvGNc3L2iNMk9xn7DVsN23j3gIRGGl5b-rMU811rQ0ChQKjjVrR0lArEjhey7ayQ7fxQHpxW8Wog5ZVPJUqnErFZQIfxul_-jYbmybuB_GOkwbJJjB5dHDjeI5eWqmCJXC0PslqsNKuymJAqQTNEiDjMNpXSJroxrWrrpJFiIoR9myeguLivGQCF3nT68j98oOqHfx724fwLB_LY45ge7lYuXfw1P5d3nSLCar5XE2imt8B5gf07w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hqNT2AC2UEkqpD1VPBBw_4uS4faxAXbYcthW3KHbsFokm1WaX38_YyYYidQ-9RfJEtsYzmW_i8XwA7zmzSvOsjI3JdCwUlehzisfWem6LHCNGaFb9Y6Km0-z6Or_agJPhLoy1NhSf2VP_GM7yq8Ys_a-yMyk4Ohh-cLekEIx2t7WGMwMhAw8yYhj0cUwkHjpqns2uRpcXXR2X8LR7jObKH6A9CkaBXcXXRpYtqsd1vBbrgWcIQOOd_1v6C9jugSYZdZbxEjZsvQs7KxIH0vv0Ljz_qyPhHpx-qwlCQvJ5ie-OEc_27F6kceRj07S-SJqMbn8285vFr9_tK_g-_jL7dB73lAqxwURxEetEWsWNrDS10nHFyoRqnVlRuQoDfWqFKz2KyESeJoYxzUVJWV45BGpKuITvw2bd1PYAiMRcyzldJY6WoqxKjVAhxXyjymiuqZERnKx0W5i-37invbgtQt5B8yLsSuF3pRAqgg-D-J-u0cY6wT2v3kGo12wEx482bhhnGKezLOURHK12suj9tC2SkFJmkiYRkGEYPcwfm5S1bZZtoVKfFyPwWS-C6hIi5xIned3ZyMP0vakd_nvZ7-Dp-exyUkwupl_fwDM2FMscweZivrRv4Ym5W9y08-Ng7PcB1fdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Dual+Formulation+of+Boosting+Algorithms&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Shen%2C+Chunhua&rft.au=Li%2C+Hanxi&rft.date=2010-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=32&rft.issue=12&rft.spage=2216&rft_id=info:doi/10.1109%2FTPAMI.2010.47&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2724110771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon