On the Dual Formulation of Boosting Algorithms
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 32; číslo 12; s. 2216 - 2231 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Los Alamitos, CA
IEEE
01.12.2010
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, ℓ 1 -norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. |
|---|---|
| AbstractList | We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of \ell_1-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, \ell_1-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, l₁-norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, ℓ 1 -norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. |
| Author | Hanxi Li Chunhua Shen |
| Author_xml | – sequence: 1 givenname: Chunhua surname: Shen fullname: Shen, Chunhua email: chunhua.shen@nicta.com.au organization: NICTA, Canberra Research Laboratory, Canberra, Australia. chunhua.shen@nicta.com.au – sequence: 2 givenname: Hanxi surname: Li fullname: Li, Hanxi |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23418863$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20975119$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0U1P3DAQBmCrApWF9thTpSpShXrKdsYfiX1cKAtIIDgsZ8tJ7MUoiamdHPrvm2W3VFoJcbIsPePxzHtMDvrQW0K-IMwRQf1c3S9ur-cUpjsvP5AZKqZyJpg6IDPAguZSUnlEjlN6AkAugH0kRxRUKRDVjMzv-mx4tNmv0bTZMsRubM3gQ58Fl52FkAbfr7NFuw7RD49d-kQOnWmT_bw7T8jD8mJ1fpXf3F1eny9u8poDHfIKhS1ZLZoKrHCspAahqqTljWso54XlzgCUQnJVYE1pxbgBqhonmSi5Q3ZCfmzffY7h92jToDufatu2prdhTHoq5FxNY74rywIoAodikt_35FMYYz-NoRHYtBspYNP5206NVWcb_Rx9Z-If_W9lEzjdAZNq07po-tqn_45xlLLYfCzfujqGlKJ1rwRBb6LTL9HpTXSal5Nne772w0sWQzS-fbPq67bKW2tfOwjOKCrK_gKf4qCY |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2011_2178324 crossref_primary_10_1109_JSAC_2024_3459028 crossref_primary_10_1109_TWC_2024_3409352 crossref_primary_10_1109_TWC_2025_3543894 crossref_primary_10_1109_TPAMI_2011_240 crossref_primary_10_1016_j_knosys_2020_106116 crossref_primary_10_1016_j_patcog_2013_07_021 crossref_primary_10_1016_j_patcog_2017_11_006 crossref_primary_10_1016_j_neunet_2013_07_006 crossref_primary_10_1109_TCYB_2016_2623900 crossref_primary_10_1109_TWC_2023_3270925 crossref_primary_10_1109_TCOMM_2024_3395295 crossref_primary_10_1109_LWC_2022_3221526 crossref_primary_10_1109_TIP_2017_2718189 crossref_primary_10_1016_j_patcog_2024_110586 crossref_primary_10_1109_TNNLS_2013_2281214 crossref_primary_10_1016_j_imavis_2014_04_009 crossref_primary_10_1016_j_cma_2021_114121 crossref_primary_10_1109_LWC_2023_3285797 crossref_primary_10_1016_j_patrec_2013_12_006 crossref_primary_10_1007_s11263_013_0608_1 crossref_primary_10_1016_j_asoc_2019_04_003 crossref_primary_10_1007_s13042_024_02169_5 crossref_primary_10_1155_2013_379718 crossref_primary_10_1016_j_patcog_2015_12_011 crossref_primary_10_1016_j_ijleo_2015_08_153 crossref_primary_10_1109_TWC_2022_3205480 crossref_primary_10_1109_TVT_2025_3525836 crossref_primary_10_3390_e18120442 crossref_primary_10_1145_3451392 crossref_primary_10_1016_j_ins_2014_06_017 crossref_primary_10_1109_JSAC_2024_3460073 crossref_primary_10_1016_j_bspc_2024_107447 crossref_primary_10_1109_LSP_2016_2606661 crossref_primary_10_1007_s11263_016_0984_4 crossref_primary_10_1007_s11063_020_10191_1 crossref_primary_10_1007_s13042_021_01296_7 crossref_primary_10_1371_journal_pone_0159945 crossref_primary_10_1016_j_ins_2013_06_012 crossref_primary_10_1109_TPAMI_2014_2315792 crossref_primary_10_1109_TCOMM_2022_3227284 crossref_primary_10_1109_TNNLS_2013_2282369 crossref_primary_10_1109_TAES_2024_3488687 crossref_primary_10_1109_TIP_2010_2053548 crossref_primary_10_1109_TWC_2023_3254538 crossref_primary_10_1109_TCOMM_2022_3189386 crossref_primary_10_3390_electronics11193154 crossref_primary_10_1007_s10994_012_5324_5 crossref_primary_10_1016_j_neucom_2017_12_053 crossref_primary_10_1016_j_procs_2021_09_141 crossref_primary_10_1109_TKDE_2019_2894148 crossref_primary_10_1109_TNNLS_2022_3190198 crossref_primary_10_1016_j_neunet_2016_05_006 crossref_primary_10_1007_s10994_014_5434_3 |
| Cites_doi | 10.1007/978-0-387-21579-2_9 10.1006/jcss.1997.1504 10.1145/1102351.1102476 10.1162/089976698300017197 10.1007/s10994-010-5173-z 10.1109/AFGR.2004.1301573 10.1145/307400.307424 10.7551/mitpress/1120.003.0062 10.1007/BF01016429 10.1214/009053607000000785 10.1017/CBO9780511804441 10.1023/A:1010852229904 10.1023/B:VISI.0000013087.49260.fb 10.1109/TPAMI.2002.1033211 10.7551/mitpress/1113.003.0017 10.1198/016214505000000907 10.1145/1143844.1143939 10.1214/aos/1016120463 10.1023/A:1012470815092 10.1007/3-540-36434-X_4 10.1287/opre.1050.0234 10.1145/1143844.1143970 10.1214/aos/1015362183 10.1006/game.1999.0738 10.1023/A:1013912006537 10.1162/089976699300016106 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| DOI | 10.1109/TPAMI.2010.47 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 1939-3539 |
| EndPage | 2231 |
| ExternalDocumentID | 2724110771 20975119 23418863 10_1109_TPAMI_2010_47 5432192 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION IQODW RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
| ID | FETCH-LOGICAL-c402t-b15e73c5db0e5f372a10bb8e4dfd2446e4fa007584961c22b34a029df83574f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283558700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 05:42:14 EDT 2025 Wed Oct 01 13:04:50 EDT 2025 Mon Jun 30 03:27:43 EDT 2025 Mon Jul 21 05:33:05 EDT 2025 Mon Jul 21 09:15:09 EDT 2025 Sat Nov 29 08:07:56 EST 2025 Tue Nov 18 22:12:50 EST 2025 Wed Aug 27 02:47:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Data analysis Linear programming LPBoost Optimization Variance Aggregate model Lagrange duality AdaBoost Supervised learning Classification Convergence rate LogitBoost entropy maximization Numerical convergence |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-b15e73c5db0e5f372a10bb8e4dfd2446e4fa007584961c22b34a029df83574f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 20975119 |
| PQID | 1030148501 |
| PQPubID | 85458 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_849449353 proquest_miscellaneous_760210406 pascalfrancis_primary_23418863 crossref_primary_10_1109_TPAMI_2010_47 pubmed_primary_20975119 ieee_primary_5432192 crossref_citationtrail_10_1109_TPAMI_2010_47 proquest_journals_1030148501 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-12-01 |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2010 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Rudin (ref3) 2004; 5 ref12 ref34 ref15 ref37 ref14 ref36 ref11 Feller (ref31) 1968; 1 ref33 ref10 Sonnenburg (ref35) 2006; 7 ref1 ref17 ref39 ref16 ref38 ref19 (ref28) 2008 ref18 (ref27) 2008 Rätsch (ref32) 2001; 42 Grove (ref9) ref24 ref26 ref20 ref41 ref22 ref21 Chang (ref25) 2001 Rätsch (ref8) 2005; 6 Mease (ref5) 2008; 9 Domingo (ref7) ref29 Kallenberg (ref30) 1997 Schapire (ref2) 1998; 26 Rifkin (ref23) 2007; 8 Leskovec (ref40) ref4 ref6 |
| References_xml | – ident: ref16 doi: 10.1007/978-0-387-21579-2_9 – volume-title: Foundations of Modern Probability year: 1997 ident: ref30 – year: 2001 ident: ref25 article-title: LIBSVM: A Library for Support Vector Machines – ident: ref1 doi: 10.1006/jcss.1997.1504 – ident: ref33 doi: 10.1145/1102351.1102476 – volume: 26 start-page: 1651 issue: 5 year: 1998 ident: ref2 article-title: Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods publication-title: Annals of Statistics – ident: ref39 doi: 10.1162/089976698300017197 – volume: 6 start-page: 2131 year: 2005 ident: ref8 article-title: Efficient Margin Maximizing with Boosting publication-title: J. Machine Learning Research – ident: ref24 doi: 10.1007/s10994-010-5173-z – ident: ref36 doi: 10.1109/AFGR.2004.1301573 – ident: ref18 doi: 10.1145/307400.307424 – ident: ref19 doi: 10.7551/mitpress/1120.003.0062 – start-page: 456 volume-title: Proc. Int’l Conf. Machine Learning ident: ref40 article-title: Linear Programming Boosting for Uneven Datasets – start-page: 692 volume-title: Proc. Nat’l Conf. Artificial Intelligence ident: ref9 article-title: Boosting in the Limit: Maximizing the Margin of Learned Ensembles – volume: 8 start-page: 441 year: 2007 ident: ref23 article-title: Value Regularization and Fenchel Duality publication-title: J. Machine Learning Research – ident: ref29 doi: 10.1007/BF01016429 – ident: ref4 doi: 10.1214/009053607000000785 – ident: ref21 doi: 10.1017/CBO9780511804441 – year: 2008 ident: ref28 article-title: CPLEX 11.1 – ident: ref41 doi: 10.1023/A:1010852229904 – year: 2008 ident: ref27 article-title: The MOSEK Optimization Toolbox for Matlab Manual, Version 5.0, Revision 93 – ident: ref38 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref14 doi: 10.1109/TPAMI.2002.1033211 – ident: ref20 doi: 10.7551/mitpress/1113.003.0017 – ident: ref26 doi: 10.1198/016214505000000907 – ident: ref12 doi: 10.1145/1143844.1143939 – ident: ref6 doi: 10.1214/aos/1016120463 – ident: ref10 doi: 10.1023/A:1012470815092 – volume: 42 start-page: 287 issue: 3 volume-title: Machine Learning year: 2001 ident: ref32 article-title: Soft Margins for AdaBoost – ident: ref15 doi: 10.1007/3-540-36434-X_4 – ident: ref34 doi: 10.1287/opre.1050.0234 – ident: ref37 doi: 10.1145/1143844.1143970 – ident: ref13 doi: 10.1214/aos/1015362183 – ident: ref22 doi: 10.1006/game.1999.0738 – volume: 7 start-page: 1531 year: 2006 ident: ref35 article-title: Large Scale Multiple Kernel Learning publication-title: J. Machine Learning Research – ident: ref17 doi: 10.1023/A:1013912006537 – volume: 1 volume-title: Introduction to Probability Theory and its Applications year: 1968 ident: ref31 – volume: 9 start-page: 131 year: 2008 ident: ref5 article-title: Evidence Contrary to the Statistical View of Boosting publication-title: J. Machine Learning Research – start-page: 180 volume-title: Proc. Ann. Conf. Computational Learning Theory ident: ref7 article-title: MadaBoost: A Modification of AdaBoost – volume: 5 start-page: 1557 year: 2004 ident: ref3 article-title: The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins publication-title: J. Machine Learning Research – ident: ref11 doi: 10.1162/089976699300016106 |
| SSID | ssj0014503 |
| Score | 2.3643906 |
| Snippet | We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin... We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of l₁-norm-regularized AdaBoost, LogitBoost, and soft-margin... We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of \ell_1-norm-regularized AdaBoost, LogitBoost, and soft-margin... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2216 |
| SubjectTerms | AdaBoost Algorithms Applied sciences Artificial intelligence Australia Boosting Classification Computer science; control theory; systems Construction Convergence Data processing. List processing. Character string processing Entropy entropy maximization Exact sciences and technology Fasteners Formulations Lagrange duality Lagrangian functions Linear programming LogitBoost LPBoost Machine learning algorithms Maximization Memory organisation. Data processing Optimization Software Support vector machine classification Support vector machines |
| Title | On the Dual Formulation of Boosting Algorithms |
| URI | https://ieeexplore.ieee.org/document/5432192 https://www.ncbi.nlm.nih.gov/pubmed/20975119 https://www.proquest.com/docview/1030148501 https://www.proquest.com/docview/760210406 https://www.proquest.com/docview/849449353 |
| Volume | 32 |
| WOSCitedRecordID | wos000283558700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-3539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VigMcKG35SFtWPiBOTevEduwct4VVkaD0UNDeItuxoVJJ0GaX39-xk01biT1wi2RHtsYzmTeZ8TyA9yx30jClU2uVSbmkAm1OstS5wG1RoseIzap_fJGXl2o-L6-24Hi8C-Oci8Vn7iQ8xlx-3dpV-FV2KjhDA8MP7hMpi_6u1pgx4CKyICOCQQvHMOK-n-bp9dX06-e-iosH0r2cljKkzx65ositEiojdYfC8T2rxWbYGd3PbOf_Nv4SXgwwk0x7vdiFLdfswc6awoEMFr0Hzx_0I9yHk28NQUBIPq7w3Rmi2YHbi7SenLVtF0qkyfT2Z7u4Wf763b2C77NP1-cX6UCokFoME5epyYSTzIraUCc8k7nOqDHK8drX6OYLx70OGELxsshsnhvGNc3L2iNMk9xn7DVsN23j3gIRGGl5b-rMU811rQ0ChQKjjVrR0lArEjhey7ayQ7fxQHpxW8Wog5ZVPJUqnErFZQIfxul_-jYbmybuB_GOkwbJJjB5dHDjeI5eWqmCJXC0PslqsNKuymJAqQTNEiDjMNpXSJroxrWrrpJFiIoR9myeguLivGQCF3nT68j98oOqHfx724fwLB_LY45ge7lYuXfw1P5d3nSLCar5XE2imt8B5gf07w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hqNT2AC2UEkqpD1VPBBw_4uS4faxAXbYcthW3KHbsFokm1WaX38_YyYYidQ-9RfJEtsYzmW_i8XwA7zmzSvOsjI3JdCwUlehzisfWem6LHCNGaFb9Y6Km0-z6Or_agJPhLoy1NhSf2VP_GM7yq8Ys_a-yMyk4Ohh-cLekEIx2t7WGMwMhAw8yYhj0cUwkHjpqns2uRpcXXR2X8LR7jObKH6A9CkaBXcXXRpYtqsd1vBbrgWcIQOOd_1v6C9jugSYZdZbxEjZsvQs7KxIH0vv0Ljz_qyPhHpx-qwlCQvJ5ie-OEc_27F6kceRj07S-SJqMbn8285vFr9_tK_g-_jL7dB73lAqxwURxEetEWsWNrDS10nHFyoRqnVlRuQoDfWqFKz2KyESeJoYxzUVJWV45BGpKuITvw2bd1PYAiMRcyzldJY6WoqxKjVAhxXyjymiuqZERnKx0W5i-37invbgtQt5B8yLsSuF3pRAqgg-D-J-u0cY6wT2v3kGo12wEx482bhhnGKezLOURHK12suj9tC2SkFJmkiYRkGEYPcwfm5S1bZZtoVKfFyPwWS-C6hIi5xIned3ZyMP0vakd_nvZ7-Dp-exyUkwupl_fwDM2FMscweZivrRv4Ym5W9y08-Ng7PcB1fdO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Dual+Formulation+of+Boosting+Algorithms&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Shen%2C+Chunhua&rft.au=Li%2C+Hanxi&rft.date=2010-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=32&rft.issue=12&rft.spage=2216&rft_id=info:doi/10.1109%2FTPAMI.2010.47&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2724110771 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |