On the Dual Formulation of Boosting Algorithms
We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 32; číslo 12; s. 2216 - 2231 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.12.2010
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of ℓ 1 -norm-regularized AdaBoost, LogitBoost, and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We also theoretically prove that approximately, ℓ 1 -norm-regularized AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation-based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stagewise additive boosting algorithms but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 0162-8828 1939-3539 1939-3539 |
| DOI: | 10.1109/TPAMI.2010.47 |