Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling
Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. Howev...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 25; číslo 4; s. 651 - 665 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. However, its training process is time consuming, and it faces the retraining problem once the characteristics of job shop scenarios vary. It is known that multitask learning is a promising paradigm for solving multiple tasks simultaneously by sharing knowledge among the tasks. To improve the training efficiency and effectiveness, this article proposes a novel surrogate-assisted evolutionary multitask algorithm via GP to share useful knowledge between different scheduling tasks. Specifically, we employ the phenotypic characterization for measuring the behaviors of scheduling rules and building a surrogate for each task accordingly. The built surrogates are used not only to improve the efficiency of solving each single task but also for knowledge transfer in multitask learning with a large number of promising individuals. The results show that the proposed algorithm can significantly improve the quality of scheduling heuristics for all scenarios. In addition, the proposed algorithm manages to solve multiple tasks collaboratively in terms of the evolved scheduling heuristics for different tasks in a multitask scenario. |
|---|---|
| AbstractList | Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic environments. Genetic programming (GP), as a hyperheuristic approach, has been successfully applied to evolve scheduling heuristics for JSS. However, its training process is time consuming, and it faces the retraining problem once the characteristics of job shop scenarios vary. It is known that multitask learning is a promising paradigm for solving multiple tasks simultaneously by sharing knowledge among the tasks. To improve the training efficiency and effectiveness, this article proposes a novel surrogate-assisted evolutionary multitask algorithm via GP to share useful knowledge between different scheduling tasks. Specifically, we employ the phenotypic characterization for measuring the behaviors of scheduling rules and building a surrogate for each task accordingly. The built surrogates are used not only to improve the efficiency of solving each single task but also for knowledge transfer in multitask learning with a large number of promising individuals. The results show that the proposed algorithm can significantly improve the quality of scheduling heuristics for all scenarios. In addition, the proposed algorithm manages to solve multiple tasks collaboratively in terms of the evolved scheduling heuristics for different tasks in a multitask scenario. |
| Author | Zhang, Fangfang Mei, Yi Zhang, Mengjie Tan, Kay Chen Nguyen, Su |
| Author_xml | – sequence: 1 givenname: Fangfang orcidid: 0000-0001-5516-3972 surname: Zhang fullname: Zhang, Fangfang email: fangfang.zhang@ecs.vuw.ac.nz organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 2 givenname: Yi orcidid: 0000-0003-0682-1363 surname: Mei fullname: Mei, Yi email: yi.mei@ecs.vuw.ac.nz organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 3 givenname: Su orcidid: 0000-0003-2365-1087 surname: Nguyen fullname: Nguyen, Su email: p.nguyen4@latrobe.edu.au organization: Centre for Data Analytics and Cognition, La Trobe University, Melbourne, VIC, Australia – sequence: 4 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 5 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kctan@polyu.edu.hk organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong |
| BookMark | eNp9kE1LAzEQhoMo-PkDxEvA89ZJ9iObo9TWDxSFqnhbsulEo9tNTbKi_96UigcPnmYYnneGeXbJZu96JOSQwYgxkCf3k8fxiANnoxyqUoDYIDtMFiwD4NVm6qGWmRD10zbZDeEVgBUlkzvEzAbv3bOKmJ2GYEPEOZ18uG6I1vXKf9GboYs2qvBGz7HHaDW9S7xXi4Xtn6lxnp599WqR5tMOP23bIb1yLZ29uCWd6RecD10C98mWUV3Ag5-6Rx6mk_vxRXZ9e345Pr3OdAE8ZqpWXBWiEihBg5RM8hxr2RpTFjqvTQ3IWwYGNGoFslRQ5nM1b02bQ81bzPfI8Xrv0rv3AUNsXt3g-3Sy4WVZFXVVMpYosaa0dyF4NI1OL64-jl7ZrmHQrKQ2K6nNSmrzIzUl2Z_k0ttF8vRv5midsYj4y8tciEJA_g3QBIYn |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s12559_022_10012_8 crossref_primary_10_1002_cpe_7469 crossref_primary_10_1016_j_eswa_2024_123336 crossref_primary_10_1016_j_ins_2022_08_103 crossref_primary_10_1016_j_cor_2024_106817 crossref_primary_10_1109_TEVC_2023_3255266 crossref_primary_10_1016_j_cie_2023_109848 crossref_primary_10_1007_s10462_024_11059_9 crossref_primary_10_1016_j_oceaneng_2025_122835 crossref_primary_10_1007_s12065_025_01034_w crossref_primary_10_1007_s00170_023_12595_4 crossref_primary_10_1016_j_ins_2023_01_072 crossref_primary_10_1016_j_aei_2024_102872 crossref_primary_10_1016_j_swevo_2024_101758 crossref_primary_10_1007_s11227_024_06324_1 crossref_primary_10_1016_j_jmsy_2023_03_003 crossref_primary_10_1016_j_cie_2025_111489 crossref_primary_10_1016_j_swevo_2024_101754 crossref_primary_10_1016_j_engappai_2023_106096 crossref_primary_10_1016_j_swevo_2025_101994 crossref_primary_10_1016_j_ins_2024_120921 crossref_primary_10_1016_j_asoc_2022_109696 crossref_primary_10_1109_TEVC_2021_3134804 crossref_primary_10_1007_s12293_025_00441_x crossref_primary_10_1007_s11227_024_06016_w crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1016_j_jmsy_2023_07_003 crossref_primary_10_1109_TEVC_2021_3100056 crossref_primary_10_1109_TASE_2024_3464857 crossref_primary_10_1109_TCYB_2022_3196887 crossref_primary_10_1007_s40747_024_01677_9 crossref_primary_10_1016_j_asoc_2024_111876 crossref_primary_10_1109_TEVC_2025_3532022 crossref_primary_10_1007_s10489_023_04918_5 crossref_primary_10_1016_j_asoc_2023_110605 crossref_primary_10_1016_j_eswa_2024_124375 crossref_primary_10_1016_j_neucom_2025_130603 crossref_primary_10_1016_j_swevo_2025_101883 crossref_primary_10_1016_j_future_2024_04_032 crossref_primary_10_1109_TETCI_2024_3353615 crossref_primary_10_54097_jceim_v10i3_8705 crossref_primary_10_1109_TEVC_2023_3254155 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1016_j_future_2023_03_034 crossref_primary_10_1109_TEVC_2021_3139437 crossref_primary_10_1016_j_engappai_2025_110001 crossref_primary_10_1109_TEVC_2023_3263871 crossref_primary_10_1109_ACCESS_2022_3151346 crossref_primary_10_1016_j_engappai_2023_106353 crossref_primary_10_1109_TSC_2024_3463423 crossref_primary_10_3390_math13111851 crossref_primary_10_1109_TEVC_2021_3065707 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1016_j_cie_2023_109111 crossref_primary_10_1016_j_swevo_2023_101258 crossref_primary_10_1016_j_swevo_2025_101970 crossref_primary_10_1109_TCYB_2022_3164399 crossref_primary_10_1109_ACCESS_2024_3418809 crossref_primary_10_1109_TEVC_2022_3227120 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1109_TEVC_2022_3210783 crossref_primary_10_1109_TII_2023_3272661 crossref_primary_10_3390_biomimetics9100604 crossref_primary_10_1016_j_knosys_2023_110906 crossref_primary_10_1109_TEVC_2022_3180693 crossref_primary_10_1109_TETC_2024_3364703 crossref_primary_10_1109_TEVC_2023_3238741 crossref_primary_10_1109_TEVC_2023_3348475 crossref_primary_10_1016_j_rcim_2022_102435 crossref_primary_10_1109_MCI_2024_3363970 crossref_primary_10_3390_app13085190 crossref_primary_10_1007_s40747_023_01105_4 crossref_primary_10_1080_00207543_2023_2294109 crossref_primary_10_3390_axioms13010037 crossref_primary_10_1109_TEVC_2023_3323877 crossref_primary_10_1016_j_ins_2023_119961 crossref_primary_10_1016_j_jocs_2022_101649 crossref_primary_10_1109_ACCESS_2022_3197637 crossref_primary_10_1016_j_autcon_2024_105588 crossref_primary_10_1109_TAI_2024_3456086 crossref_primary_10_1109_TCYB_2023_3273625 crossref_primary_10_1109_TEVC_2023_3244607 crossref_primary_10_3390_a17020067 crossref_primary_10_1016_j_swevo_2023_101318 crossref_primary_10_3233_ICA_230704 crossref_primary_10_1007_s11276_024_03677_6 crossref_primary_10_1016_j_cor_2025_107027 crossref_primary_10_1109_TAES_2024_3397958 crossref_primary_10_1109_TEVC_2021_3133874 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_asoc_2022_109775 crossref_primary_10_1109_TAI_2024_3414289 crossref_primary_10_1016_j_swevo_2023_101279 crossref_primary_10_1016_j_knosys_2023_111018 crossref_primary_10_1109_TEVC_2023_3338740 crossref_primary_10_1016_j_aei_2022_101756 crossref_primary_10_1109_TETCI_2024_3381512 crossref_primary_10_1007_s40747_024_01605_x crossref_primary_10_1007_s40747_024_01465_5 crossref_primary_10_1109_TEVC_2022_3195165 crossref_primary_10_1016_j_asoc_2025_112787 crossref_primary_10_1016_j_swevo_2025_101969 crossref_primary_10_1007_s40747_025_01908_7 crossref_primary_10_1109_TEVC_2024_3357819 crossref_primary_10_1109_TEVC_2024_3370937 crossref_primary_10_1016_j_ins_2024_120975 crossref_primary_10_1016_j_swevo_2025_102136 crossref_primary_10_1016_j_asoc_2022_109827 crossref_primary_10_1109_TEVC_2021_3101697 crossref_primary_10_1109_TEVC_2023_3281810 crossref_primary_10_1016_j_asoc_2022_108736 crossref_primary_10_3390_f15122114 crossref_primary_10_1109_TEVC_2022_3175065 crossref_primary_10_1109_TEVC_2023_3349250 crossref_primary_10_3390_electronics14183613 crossref_primary_10_3390_pr11010065 crossref_primary_10_1016_j_asoc_2023_111104 crossref_primary_10_1016_j_neucom_2025_130917 crossref_primary_10_1016_j_eswa_2023_122025 crossref_primary_10_1016_j_swevo_2024_101535 crossref_primary_10_1109_TEVC_2022_3154416 crossref_primary_10_1109_TEVC_2024_3358854 crossref_primary_10_1016_j_swevo_2024_101809 crossref_primary_10_1016_j_swevo_2024_101768 crossref_primary_10_1016_j_asoc_2023_110545 crossref_primary_10_1109_TCYB_2021_3120188 crossref_primary_10_1109_TASE_2024_3514863 crossref_primary_10_1016_j_swevo_2022_101203 crossref_primary_10_1109_TASE_2023_3326315 crossref_primary_10_1016_j_swevo_2025_102114 |
| Cites_doi | 10.1287/opre.8.2.219 10.3390/technologies6040107 10.1109/TETC.2019.2945775 10.1007/978-1-4613-0303-9_33 10.1007/BF02238804 10.1007/s10710-017-9310-3 10.1016/0166-218X(93)E0169-Y 10.1109/TEVC.2021.3065707 10.1109/MCI.2018.2866731 10.1109/TCYB.2016.2562674 10.1162/EVCO_a_00105 10.1109/TSMC.2018.2853719 10.1109/TCYB.2020.2974100 10.1007/BF01721162 10.1109/TETCI.2019.2916051 10.1007/978-3-319-13563-2_55 10.1109/CEC.2018.8477830 10.1109/TCYB.2020.2981733 10.1162/EVCO_a_00133 10.1109/CEC.2015.7257018 10.1145/3377929.3389934 10.1109/CEC.2019.8790112 10.1109/70.720354 10.1287/opre.44.1.87 10.1109/CEC.2019.8790030 10.1007/s10951-006-5591-8 10.1017/S0269888900006068 10.1016/j.ins.2019.10.066 10.1007/978-3-030-03991-2_69 10.1109/TCYB.2020.3024849 10.1109/TEVC.2017.2783441 10.1145/3321707.3321790 10.1007/978-3-030-03991-2_66 10.1007/978-3-030-03991-2_43 10.1007/978-3-642-01799-5_6 10.1007/978-3-030-44094-7_17 10.1007/978-3-030-43680-3_14 10.1109/TEVC.2019.2906927 10.1109/SSCI44817.2019.9002804 10.1109/TCYB.2019.2936001 10.1007/0-387-28356-0_5 10.1109/TEVC.2015.2458037 10.1016/j.swevo.2011.05.001 10.1080/002075400189301 10.1007/s12559-016-9395-7 10.1007/978-3-030-16711-0_3 10.1136/bmjstel-2018-000370 10.1109/TEVC.2017.2785351 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3065707 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 665 |
| ExternalDocumentID | 10_1109_TEVC_2021_3065707 9377470 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science for Technological Innovation Challenge Fund grantid: E3603/2903 – fundername: China Scholarship Council/Victoria University of Wellington Joint Ph.D. Scholarships funderid: 10.13039/501100004543 – fundername: Marsden Fund of New Zealand Government grantid: VUW1509; VUW1614 funderid: 10.13039/100015896 – fundername: MBIE SSIF Fund grantid: VUW RTVU1914 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c402t-a8a2a4767e90c0991923e89bff54c38f80e2b10f0ceca095a053dadbfb3082be3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 167 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679530900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 09 06:43:46 EST 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 21:13:14 EST 2025 Wed Aug 27 02:40:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-a8a2a4767e90c0991923e89bff54c38f80e2b10f0ceca095a053dadbfb3082be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0682-1363 0000-0001-5516-3972 0000-0003-2365-1087 0000-0002-6802-2463 0000-0003-4463-9538 |
| OpenAccessLink | https://figshare.com/articles/journal_contribution/Surrogate-Assisted_Evolutionary_Multitask_Genetic_Programming_for_Dynamic_Flexible_Job_Shop_Scheduling/19704499 |
| PQID | 2556486511 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9377470 proquest_journals_2556486511 crossref_citationtrail_10_1109_TEVC_2021_3065707 crossref_primary_10_1109_TEVC_2021_3065707 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref15 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref19 zhang (ref39) 0 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 foo (ref9) 1988 ref33 ref32 ref2 ref1 ref38 chen (ref30) 2020 ong (ref23) 2006 da (ref52) 2017 pearl (ref12) 1984 ref26 ref25 ref20 ref22 ref21 ref28 ref27 zhang (ref24) 2021 ref29 bennett (ref3) 2014 |
| References_xml | – ident: ref1 doi: 10.1287/opre.8.2.219 – start-page: 2928 year: 2006 ident: ref23 article-title: Curse and blessing of uncertainty in evolutionary algorithm using approximation publication-title: Proc IEEE Int Conf Evol Comput – ident: ref21 doi: 10.3390/technologies6040107 – ident: ref35 doi: 10.1109/TETC.2019.2945775 – ident: ref10 doi: 10.1007/978-1-4613-0303-9_33 – ident: ref5 doi: 10.1007/BF02238804 – ident: ref41 doi: 10.1007/s10710-017-9310-3 – ident: ref4 doi: 10.1016/0166-218X(93)E0169-Y – year: 2021 ident: ref24 article-title: Collaborative multi-fidelity based surrogate models for genetic programming in dynamic flexible job shop scheduling publication-title: IEEE Trans Cybern – ident: ref43 doi: 10.1109/TEVC.2021.3065707 – start-page: 483 year: 2014 ident: ref3 article-title: A hybrid discrete particle swarm optimisation method for grid computation scheduling publication-title: Proc IEEE Congr Evol Comput – ident: ref49 doi: 10.1109/MCI.2018.2866731 – ident: ref20 doi: 10.1109/TCYB.2016.2562674 – ident: ref17 doi: 10.1162/EVCO_a_00105 – ident: ref31 doi: 10.1109/TSMC.2018.2853719 – ident: ref29 doi: 10.1109/TCYB.2020.2974100 – ident: ref15 doi: 10.1007/BF01721162 – ident: ref53 doi: 10.1109/TETCI.2019.2916051 – ident: ref26 doi: 10.1007/978-3-319-13563-2_55 – year: 0 ident: ref39 article-title: Multitask genetic programming based generative hyper-heuristics: A case study in dynamic scheduling publication-title: IEEE Trans Cybern – ident: ref34 doi: 10.1109/CEC.2018.8477830 – ident: ref55 doi: 10.1109/TCYB.2020.2981733 – ident: ref25 doi: 10.1162/EVCO_a_00133 – ident: ref48 doi: 10.1109/CEC.2015.7257018 – ident: ref32 doi: 10.1145/3377929.3389934 – ident: ref56 doi: 10.1109/CEC.2019.8790112 – ident: ref8 doi: 10.1109/70.720354 – ident: ref33 doi: 10.1287/opre.44.1.87 – ident: ref42 doi: 10.1109/CEC.2019.8790030 – ident: ref2 doi: 10.1007/s10951-006-5591-8 – ident: ref11 doi: 10.1017/S0269888900006068 – ident: ref45 doi: 10.1016/j.ins.2019.10.066 – ident: ref27 doi: 10.1007/978-3-030-03991-2_69 – ident: ref18 doi: 10.1109/TCYB.2020.3024849 – ident: ref37 doi: 10.1109/TEVC.2017.2783441 – ident: ref7 doi: 10.1145/3321707.3321790 – ident: ref47 doi: 10.1007/978-3-030-03991-2_66 – year: 1984 ident: ref12 publication-title: Intelligent Search Strategies for Computer Problem Solving – ident: ref6 doi: 10.1007/978-3-030-03991-2_43 – year: 2020 ident: ref30 article-title: An evolutionary multitasking-based feature selection method for high-dimensional classification publication-title: IEEE Trans Cybern – ident: ref38 doi: 10.1007/978-3-642-01799-5_6 – start-page: 341 year: 1988 ident: ref9 article-title: Integer linear programming neural networks for job-shop scheduling publication-title: Proc IEEE Int Conf Neural Netw – ident: ref14 doi: 10.1007/978-3-030-44094-7_17 – ident: ref44 doi: 10.1007/978-3-030-43680-3_14 – ident: ref54 doi: 10.1109/TEVC.2019.2906927 – ident: ref46 doi: 10.1109/SSCI44817.2019.9002804 – ident: ref50 doi: 10.1109/TCYB.2019.2936001 – ident: ref16 doi: 10.1007/0-387-28356-0_5 – ident: ref28 doi: 10.1109/TEVC.2015.2458037 – year: 2017 ident: ref52 publication-title: Evolutionary Multitasking for Single-objective Continuous Optimization Benchmark Problems Performance Metric and Baseline Results – ident: ref22 doi: 10.1016/j.swevo.2011.05.001 – ident: ref13 doi: 10.1080/002075400189301 – ident: ref51 doi: 10.1007/s12559-016-9395-7 – ident: ref40 doi: 10.1007/978-3-030-16711-0_3 – ident: ref19 doi: 10.1136/bmjstel-2018-000370 – ident: ref36 doi: 10.1109/TEVC.2017.2785351 |
| SSID | ssj0014519 |
| Score | 2.6621923 |
| Snippet | Dynamic flexible job shop scheduling (JSS) is an important combinatorial optimization problem with complex routing and sequencing decisions under dynamic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 651 |
| SubjectTerms | Algorithms Combinatorial analysis Dynamic flexible job shop scheduling (DFJSS) Dynamic scheduling Evolutionary algorithms Genetic algorithms genetic programming (GP) Heuristic Heuristic algorithms hyperheuristics Job shop scheduling Job shops Knowledge management Learning multitask learning Optimization Processor scheduling Scheduling Sequential analysis Statistics surrogate Task analysis Task scheduling Training |
| Title | Surrogate-Assisted Evolutionary Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling |
| URI | https://ieeexplore.ieee.org/document/9377470 https://www.proquest.com/docview/2556486511 |
| Volume | 25 |
| WOSCitedRecordID | wos000679530900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB2qeNCDH1WxWiUHT-Jqtu42yVFqi4gUwQ96W5JsFkHtytoW_PfObNIiKIK3HJIQeEnmTTLzBuA4NcqqNI8jJAdplMSOR8ZJFclEGavRRKT1O-TTrRgO5Wik7hpwusiFcc7VwWfujJr1X35e2ik9lZ2jKUX2iw76khBdn6u1-DEgmRQfTK-QMcpR-MGMuTp_6D_10BPsxGdUJl1Q5dhvNqguqvLjJq7Ny2DjfwvbhPVAI9mlx30LGm7chI15iQYWTmwT1r7pDTZhlailV2behuJ-WlUlvaJFiBGhnbP-LOxEXX0yn5urP14YaVPjIHbng7necDKGZJdd-XL2bECqmubVsZvSsPvn8h0X8Iw2jFLdd-Bx0H_oXUeh6kJk0ZecRFrqjk5EVzjFLfJHooCInimKNLEXspDcdUzMC26d1UjQNB7jXOemMKR8Y9zFLiyPy7HbA4a-lyEHqOhIh3dFbPKYWxlrIQTPhTUt4HMcMhskyakyxmtWuyZcZQRdRtBlAboWnCyGvHs9jr86bxNWi44Bpha052Bn4cR-ZCTFlsgu8s_930cdwCrN7YP_2rA8qabuEFbsDHGrjurN-AUnu9y3 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgY1Vcnzl4EqtpbW1yFN3Fx7oIrrK3kqQpC-pWqiv4751psougCN56SNLAl2S-SWa-AdhPtDQyycMAyUESxKHlgbZCBiKW2ig0EUl9D_nYSbtd0e_Luyk4nOTCWGvr4DN7RJ_1W35emhFdlR2jKUX2iw76TBLHEXfZWpM3AxJKceH0Ejmj6Ps3zJDL417r8Rx9wSg8okLpKdWO_WaF6rIqP87i2sC0l_43tWVY9ESSnTnkV2DKDhuwNC7SwPyebcDCN8XBBswTuXTazKtQ3I-qqqR7tABRIrxz1vrwa1FVn8xl56q3J0bq1NiJ3blwrhccjCHdZReuoD1rk66mfrbsutTsflC-4gQGaMUo2X0NHtqt3vll4OsuBAa9yfdACRWpOD1NreQGGSSRQMRPF0USmxNRCG4jHfKCG2sUUjSFGzlXuS40ad9oe7IO08NyaDeAofelyQUqImHxtAh1HnIjQpWmKc9To5vAxzhkxouSU22M56x2TrjMCLqMoMs8dE04mHR5dYocfzVeJawmDT1MTdgeg535PfuWkRhbLE6RgW7-3msP5i57t52sc9W92YJ5-o8LBdyG6fdqZHdg1nwghtVuvTC_AMdd3_4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate-Assisted+Evolutionary+Multitask+Genetic+Programming+for+Dynamic+Flexible+Job+Shop+Scheduling&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Fangfang&rft.au=Mei%2C+Yi&rft.au=Nguyen%2C+Su&rft.au=Zhang%2C+Mengjie&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=25&rft.issue=4&rft.spage=651&rft.epage=665&rft_id=info:doi/10.1109%2FTEVC.2021.3065707&rft.externalDocID=9377470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |