A Python surrogate modeling framework with derivatives

The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional...

Full description

Saved in:
Bibliographic Details
Published in:Advances in engineering software (1992) Vol. 135; p. 102662
Main Authors: Bouhlel, Mohamed Amine, Hwang, John T., Bartoli, Nathalie, Lafage, Rémi, Morlier, Joseph, Martins, Joaquim R.R.A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2019
Elsevier
Subjects:
ISSN:0965-9978
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional methods. SMT is different from existing surrogate modeling libraries because of its emphasis on derivatives, including training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives with respect to training data. It also includes unique surrogate models: kriging by partial least-squares reduction, which scales well with the number of inputs; and energy-minimizing spline interpolation, which scales well with the number of training points. The efficiency and effectiveness of SMT are demonstrated through a series of examples. SMT is documented using custom tools for embedding automatically tested code and dynamically generated plots to produce high-quality user guides with minimal effort from contributors. SMT is maintained in a public version control repository.11https://github.com/SMTorg/SMT.
AbstractList The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional methods. SMT is different from existing surrogate modeling libraries because of its emphasis on derivatives, including training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives with respect to training data. It also includes unique surrogate models: kriging by partial least-squares reduction, which scales well with the number of inputs; and energy-minimizing spline interpolation, which scales well with the number of training points. The efficiency and effectiveness of SMT are demonstrated through a series of examples. SMT is documented using custom tools for embedding automatically tested code and dynamically generated plots to produce high-quality user guides with minimal effort from contributors. SMT is maintained in a public version control repository. La toolbox (SMT) est une librairie de python qui contient une collection de modèles réduits, de techniques d'échantillonnage, et des fonctions d'évaluation. Ceci vise à fournir une bibliothèque simple à utiliser pour des modèles réduits. SMT est différente des librairies existantes modelant des bibliothèques car elle met l’accent sur la connaissance des dérivées. Elle inclut également les nouveaux modèles réduits qui ne sont pas disponibles ailleurs : krigeage combiné aux moindres carrés partiels et interpolation par spline basée sur une minimisation d’énergie. SMT est documentée et distribuée sous la licence New BSD de schéma et peut être téléchargée via https://github.COM/SMTorg/SMT.
The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and benchmarking functions. This package provides a library of surrogate models that is simple to use and facilitates the implementation of additional methods. SMT is different from existing surrogate modeling libraries because of its emphasis on derivatives, including training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives with respect to training data. It also includes unique surrogate models: kriging by partial least-squares reduction, which scales well with the number of inputs; and energy-minimizing spline interpolation, which scales well with the number of training points. The efficiency and effectiveness of SMT are demonstrated through a series of examples. SMT is documented using custom tools for embedding automatically tested code and dynamically generated plots to produce high-quality user guides with minimal effort from contributors. SMT is maintained in a public version control repository.11https://github.com/SMTorg/SMT.
ArticleNumber 102662
Author Lafage, Rémi
Martins, Joaquim R.R.A.
Bouhlel, Mohamed Amine
Hwang, John T.
Morlier, Joseph
Bartoli, Nathalie
Author_xml – sequence: 1
  givenname: Mohamed Amine
  orcidid: 0000-0003-2182-3340
  surname: Bouhlel
  fullname: Bouhlel, Mohamed Amine
  email: mbouhlel@umich.edu
  organization: Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: John T.
  surname: Hwang
  fullname: Hwang, John T.
  email: jhwang@eng.ucsd.edu
  organization: Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Nathalie
  orcidid: 0000-0002-6451-2203
  surname: Bartoli
  fullname: Bartoli, Nathalie
  email: nathalie.bartoli@onera.fr
  organization: ONERA/DTIS, Université de Toulouse, Toulouse, France
– sequence: 4
  givenname: Rémi
  surname: Lafage
  fullname: Lafage, Rémi
  email: remi.lafage@onera.fr
  organization: ONERA/DTIS, Université de Toulouse, Toulouse, France
– sequence: 5
  givenname: Joseph
  surname: Morlier
  fullname: Morlier, Joseph
  email: joseph.morlier@isae-supaero.fr
  organization: ICA, Université de Toulouse, ISAE–SUPAERO, INSA, CNRS, MINES ALBI, UPS, Toulouse, France
– sequence: 6
  givenname: Joaquim R.R.A.
  orcidid: 0000-0003-2143-1478
  surname: Martins
  fullname: Martins, Joaquim R.R.A.
  email: jrram@umich.edu
  organization: Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
BackLink https://hal.science/hal-02294310$$DView record in HAL
BookMark eNqNkE1LAzEQhnOoYFv9D3v1sOsk-5mLUItaoaAHPYc0mbSp240kcUv_vVuqCF70NDC87zPDMyGjznVISEIho0Cr620mdY_dOjgTMwaUZ5BnAOWIjIFXZcp53ZyTSQhbAFoAo2NSzZLnQ9y4Lgkf3ru1jJjsnMbWduvEeLnDvfNvyd7GTaLR215G22O4IGdGtgEvv-aUvN7fvcwX6fLp4XE-W6ZqwMe0Rs7zJueNrCVoio02hmrgtFrRShWmkcyUXDWqLgqFjK_KnLMKjVFaU8NUPiVXJ-5GtuLd2530B-GkFYvZUhx3wBgvcgo9HbI3p6zyLgSPRigbh3ddF720raAgjpbEVvxYEkdLAnIxWBoAzS_A98V_VG9PVRxk9Ba9CMpip1BbjyoK7ezfkE9cHY18
CitedBy_id crossref_primary_10_1371_journal_pone_0266233
crossref_primary_10_3390_aerospace7070087
crossref_primary_10_1016_j_apenergy_2022_120357
crossref_primary_10_1007_s11081_022_09731_6
crossref_primary_10_3847_1538_4357_ac6606
crossref_primary_10_1186_s10033_023_00857_x
crossref_primary_10_1007_s00158_024_03906_8
crossref_primary_10_1088_1475_7516_2021_12_046
crossref_primary_10_1108_RPJ_02_2024_0068
crossref_primary_10_1007_s00158_019_02387_4
crossref_primary_10_1007_s00158_021_03001_2
crossref_primary_10_1017_dce_2024_56
crossref_primary_10_1016_j_uclim_2024_101831
crossref_primary_10_1371_journal_pcbi_1010533
crossref_primary_10_2514_1_J063920
crossref_primary_10_3233_ISP_230013
crossref_primary_10_1016_j_ins_2022_04_041
crossref_primary_10_3390_aerospace12070644
crossref_primary_10_1016_j_renene_2024_120115
crossref_primary_10_1016_j_nucengdes_2022_111968
crossref_primary_10_1016_j_ast_2023_108673
crossref_primary_10_1016_j_firesaf_2020_103175
crossref_primary_10_1016_j_applthermaleng_2022_119831
crossref_primary_10_1016_j_swevo_2023_101252
crossref_primary_10_1107_S1600576723010014
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1007_s00158_025_03998_w
crossref_primary_10_1016_j_camwa_2020_02_010
crossref_primary_10_1108_EC_06_2023_0247
crossref_primary_10_1016_j_euromechflu_2024_10_008
crossref_primary_10_1016_j_ifacol_2020_12_316
crossref_primary_10_1016_j_compchemeng_2024_108584
crossref_primary_10_1108_HFF_09_2022_0553
crossref_primary_10_3847_1538_4357_ac58fd
crossref_primary_10_1007_s00170_024_13489_9
crossref_primary_10_1016_j_buildenv_2023_111157
crossref_primary_10_1016_j_sna_2022_113949
crossref_primary_10_2514_1_J063533
crossref_primary_10_1088_1742_6596_2507_1_012009
crossref_primary_10_1029_2023MS003792
crossref_primary_10_1016_j_neucom_2023_126472
crossref_primary_10_1016_j_cma_2024_116913
crossref_primary_10_1016_j_paerosci_2021_100714
crossref_primary_10_3847_PSJ_ac38ac
crossref_primary_10_2514_1_I011614
crossref_primary_10_1038_s43247_025_02366_2
crossref_primary_10_1016_j_anucene_2021_108494
crossref_primary_10_1016_j_ast_2021_106701
crossref_primary_10_1007_s00158_024_03817_8
crossref_primary_10_1016_j_procir_2024_10_069
crossref_primary_10_1088_1755_1315_1337_1_012019
crossref_primary_10_3390_agriculture14020167
crossref_primary_10_1016_j_ast_2024_109383
crossref_primary_10_3390_aerospace7100152
crossref_primary_10_1007_s00158_021_03016_9
crossref_primary_10_2514_1_J061603
crossref_primary_10_1016_j_compchemeng_2023_108517
crossref_primary_10_2514_1_J059254
crossref_primary_10_1007_s10589_024_00563_x
crossref_primary_10_1109_TAP_2025_3534987
crossref_primary_10_1016_j_ast_2022_107388
crossref_primary_10_3390_app13116361
crossref_primary_10_1016_j_cma_2023_116687
crossref_primary_10_1103_PhysRevResearch_5_L012021
crossref_primary_10_1016_j_advengsoft_2023_103571
crossref_primary_10_1080_19942060_2025_2493071
crossref_primary_10_1016_j_neunet_2022_06_025
crossref_primary_10_1007_s12145_024_01361_z
crossref_primary_10_1007_s11431_024_2764_5
crossref_primary_10_1007_s00158_023_03736_0
crossref_primary_10_2514_1_C037899
crossref_primary_10_1016_j_asoc_2023_110744
crossref_primary_10_1109_TSMC_2024_3519537
crossref_primary_10_1002_nme_7498
crossref_primary_10_1016_j_jcp_2022_111595
crossref_primary_10_1007_s42405_022_00476_1
crossref_primary_10_3390_aerospace8010010
crossref_primary_10_1007_s00366_024_02035_6
crossref_primary_10_1029_2021MS002843
crossref_primary_10_1007_s41019_022_00193_5
crossref_primary_10_1016_j_cma_2023_116453
crossref_primary_10_1007_s11740_022_01174_3
crossref_primary_10_1016_j_enconman_2022_116033
crossref_primary_10_1016_j_ijmst_2025_02_003
crossref_primary_10_2514_1_C038291
crossref_primary_10_1016_j_jhydrol_2023_129496
crossref_primary_10_2514_1_J061032
crossref_primary_10_3390_aerospace11040260
crossref_primary_10_1016_j_renene_2023_05_054
crossref_primary_10_3390_atmos13030444
crossref_primary_10_1016_j_actaastro_2020_12_018
crossref_primary_10_3390_math11132937
crossref_primary_10_1016_j_ast_2020_105980
crossref_primary_10_1109_TITS_2021_3130040
crossref_primary_10_1007_s00500_022_07362_8
crossref_primary_10_3390_e25030410
crossref_primary_10_1007_s00158_023_03620_x
crossref_primary_10_1007_s00170_022_10260_w
crossref_primary_10_1287_ijoc_2023_0250
crossref_primary_10_3390_drones6100307
crossref_primary_10_1017_dce_2024_29
crossref_primary_10_1080_01605682_2024_2415474
crossref_primary_10_1093_mnras_stab661
crossref_primary_10_3390_aerospace9100594
crossref_primary_10_1017_aer_2023_66
crossref_primary_10_2514_1_J063222
crossref_primary_10_1088_1742_6596_2265_3_032095
crossref_primary_10_1007_s00158_024_03785_z
crossref_primary_10_1016_j_ast_2021_107309
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_2514_1_J063976
crossref_primary_10_2514_1_J059921
crossref_primary_10_1002_nme_6981
crossref_primary_10_1016_j_applthermaleng_2023_121453
crossref_primary_10_1007_s00158_020_02646_9
crossref_primary_10_1093_mnras_stad2814
crossref_primary_10_1016_j_ymssp_2023_110255
crossref_primary_10_1002_aic_17656
crossref_primary_10_1016_j_engfracmech_2022_108303
crossref_primary_10_1016_j_tust_2023_105315
crossref_primary_10_1016_j_ast_2024_109331
crossref_primary_10_1038_s41598_024_73323_w
crossref_primary_10_1016_j_ast_2023_108846
crossref_primary_10_2514_1_B38696
crossref_primary_10_1007_s00158_021_03048_1
crossref_primary_10_1016_j_ast_2021_106984
crossref_primary_10_1016_j_ast_2022_107357
crossref_primary_10_1007_s11998_020_00352_1
crossref_primary_10_1016_j_ast_2023_108843
crossref_primary_10_1016_j_apenergy_2024_123130
crossref_primary_10_1007_s11047_020_09820_4
crossref_primary_10_3390_s24155057
crossref_primary_10_2514_1_J062611
crossref_primary_10_1088_2632_2153_acb2b3
crossref_primary_10_3390_app12031633
crossref_primary_10_1016_j_swevo_2024_101813
crossref_primary_10_1016_j_ress_2021_108139
crossref_primary_10_1016_j_eswa_2025_127472
crossref_primary_10_3390_app10062075
crossref_primary_10_1016_j_ijheatfluidflow_2023_109112
crossref_primary_10_1007_s42235_021_0069_0
crossref_primary_10_1038_s42005_022_00977_1
crossref_primary_10_1007_s00158_020_02488_5
crossref_primary_10_1016_j_engappai_2024_108118
crossref_primary_10_1016_j_envsoft_2023_105825
crossref_primary_10_1016_j_icarus_2023_115432
crossref_primary_10_1080_19942060_2025_2499131
crossref_primary_10_1016_j_firesaf_2022_103591
crossref_primary_10_1016_j_chroma_2022_463408
crossref_primary_10_1016_j_advengsoft_2020_102900
crossref_primary_10_1088_3049_4761_adf6bf
crossref_primary_10_1007_s00158_021_02977_1
crossref_primary_10_1002_aic_17358
crossref_primary_10_1016_j_ast_2023_108185
crossref_primary_10_1016_j_ress_2023_109393
crossref_primary_10_1109_TITS_2023_3335104
crossref_primary_10_1177_09544100231205154
crossref_primary_10_3390_aerospace11080669
crossref_primary_10_1016_j_ijheatfluidflow_2023_109242
crossref_primary_10_1007_s10898_024_01443_8
Cites_doi 10.1016/j.ast.2017.12.030
10.2514/1.C032150
10.2514/1.J051895
10.1007/s00158-019-02211-z
10.2514/1.C034967
10.1006/jcom.2001.0588
10.1115/1.4029219
10.1080/0305215X.2017.1419344
10.1007/s00366-018-0590-x
10.1016/j.ast.2019.03.041
10.2514/6.2013-2581
10.2514/1.C035082
10.1007/s00158-015-1395-9
10.1007/s00158-010-0554-2
10.1080/00401706.1993.10485320
10.1145/3182393
10.1016/j.jspi.2004.02.014
10.1007/s00158-012-0763-y
10.1080/00401706.1989.10488474
10.1155/2016/6723410
10.2514/1.29123
10.2514/1.J054154
10.2514/1.J052184
10.1016/j.ast.2012.01.006
10.1162/evco.2006.14.1.119
ContentType Journal Article
Copyright 2019
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2019
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.advengsoft.2019.03.005
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
Mathematics
Physics
ExternalDocumentID oai:HAL:hal-02294310v1
10_1016_j_advengsoft_2019_03_005
S0965997818309360
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c402t-7e9938398a7a0d1e8dff1d0916b16c4f8a2f59c8c744ce29b53926effcdd1f2c3
ISICitedReferencesCount 256
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502030600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Tue Nov 25 06:21:16 EST 2025
Sat Nov 29 07:07:04 EST 2025
Tue Nov 18 21:51:13 EST 2025
Fri Feb 23 02:27:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Surrogate modeling
Gradient-enhanced surrogate modeling
Derivatives
SAMPLING
METAMODELING
GRADIENT-ENHANCED SURROGATE MODELING
MODELE REDUIT BASE SUR LE GRADIENT
SURROGATE MODELING
MODELE REDUIT
ECHANTILLONNAGE
DERIVATIVES
DERIVEES
METAMODELE
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c402t-7e9938398a7a0d1e8dff1d0916b16c4f8a2f59c8c744ce29b53926effcdd1f2c3
ORCID 0000-0003-2182-3340
0000-0002-6451-2203
0000-0003-2143-1478
0000-0002-1511-2086
OpenAccessLink https://hal.science/hal-02294310
ParticipantIDs hal_primary_oai_HAL_hal_02294310v1
crossref_citationtrail_10_1016_j_advengsoft_2019_03_005
crossref_primary_10_1016_j_advengsoft_2019_03_005
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2019_03_005
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Advances in engineering software (1992)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gray, Hwang, Martins, Moore, Naylor (bib0016) 2019
Li, Bouhlel, Martins (bib0014) 2019; 57
Bouhlel, Bartoli, Otsmane, Morlier (bib0004) 2016; 53
Shepard (bib0011) 1968
Martins, Lambe (bib0017) 2013; 51
Han, Görtz, Zimmermann (bib0021) 2013; 25
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bib0001) 2011; 12
Liping, Don, Gene, Mahidhar (bib0038) 2006
Bouhlel, Martins (bib0006) 2019; 1
Bouhlel, Bartoli, Regis, Otsmane, Morlier (bib0033) 2018; 50
Lyu Z, Kenway GK, Paige C, Martins JRRA. Automatic differentiation adjoint of the Reynolds-averaged Navier–Stokes equations with a turbulence model. In: Proceedings of the twenty-first AIAA computational fluid dynamics conference. San Diego, CA; doi
Powell (bib0013) 1994
Martins (bib0028) 2016; Green Aviation
Hwang, Jasa, Martins (bib0030) 2019
An, Owen (bib0023) 2001; 17
Burdette, Martins (bib0029) 2019; 56
Jin, Chen, Sudjianto (bib0008) 2005; 134
Powell (bib0010) 1992
Bartoli, Lefebvre, Dubreuil, Olivanti, Priem, Bons, Martins, Morlier (bib0015) 2019
Mader, Martins, Alonso, van der Weide (bib0024) 2008; 46
Hastie, Tibshirani, Friedman (bib0012) 2001
Kenway, Martins (bib0026) 2016; 54
Martins, Hwang (bib0018) 2013; 51
Noesis Solutions. OPTIMUS. 2009.
Rasmussen, Williams (bib0003) 2006
Lambe, Martins (bib0031) 2012; 46
.
Morris, Mitchell, Ylvisaker (bib0039) 1993; 35
Le Gratiet (bib0022) 2013
Sacks, Schiller, Welch (bib0009) 1989; 31
Bettebghor, Bartoli, Grihon, Morlier, Samuelides (bib0020) 2011; 43
Hwang, Ning (bib0034) 2018
Shang, Qiu (bib0036) 2006; 14
Bouhlel, Bartoli, Morlier, Otsmane (bib0005) 2016
Hwang, Martins (bib0019) 2018; 44
Kenway, Martins (bib0027) 2014; 51
Cheng, Younis, Hajikolaei, Wang (bib0037) 2015; 137
Deb (bib0040) 1998; 186
Gorissen, Crombecq, Couckuyt, Dhaene, Demeester (bib0002) 2010; 11
Forrester, Sobester, Keane (bib0035) 2008
Hwang, Martins (bib0007) 2018; 75
Powell (10.1016/j.advengsoft.2019.03.005_bib0010) 1992
Gray (10.1016/j.advengsoft.2019.03.005_bib0016) 2019
Martins (10.1016/j.advengsoft.2019.03.005_sbref0027) 2016; Green Aviation
10.1016/j.advengsoft.2019.03.005_bib0032
Gorissen (10.1016/j.advengsoft.2019.03.005_bib0002) 2010; 11
Hwang (10.1016/j.advengsoft.2019.03.005_bib0034) 2018
Kenway (10.1016/j.advengsoft.2019.03.005_bib0027) 2014; 51
Sacks (10.1016/j.advengsoft.2019.03.005_bib0009) 1989; 31
Deb (10.1016/j.advengsoft.2019.03.005_bib0040) 1998; 186
Mader (10.1016/j.advengsoft.2019.03.005_bib0024) 2008; 46
Bouhlel (10.1016/j.advengsoft.2019.03.005_sbref0005) 2016
Han (10.1016/j.advengsoft.2019.03.005_bib0021) 2013; 25
Jin (10.1016/j.advengsoft.2019.03.005_bib0008) 2005; 134
Martins (10.1016/j.advengsoft.2019.03.005_bib0018) 2013; 51
Lambe (10.1016/j.advengsoft.2019.03.005_bib0031) 2012; 46
Pedregosa (10.1016/j.advengsoft.2019.03.005_bib0001) 2011; 12
Hwang (10.1016/j.advengsoft.2019.03.005_bib0007) 2018; 75
Bartoli (10.1016/j.advengsoft.2019.03.005_bib0015) 2019
Forrester (10.1016/j.advengsoft.2019.03.005_sbref0033) 2008
Bouhlel (10.1016/j.advengsoft.2019.03.005_bib0004) 2016; 53
Kenway (10.1016/j.advengsoft.2019.03.005_bib0026) 2016; 54
Bouhlel (10.1016/j.advengsoft.2019.03.005_bib0006) 2019; 1
Liping (10.1016/j.advengsoft.2019.03.005_bib0038) 2006
Cheng (10.1016/j.advengsoft.2019.03.005_bib0037) 2015; 137
Hastie (10.1016/j.advengsoft.2019.03.005_bib0012) 2001
Rasmussen (10.1016/j.advengsoft.2019.03.005_bib0003) 2006
10.1016/j.advengsoft.2019.03.005_bib0025
Burdette (10.1016/j.advengsoft.2019.03.005_bib0029) 2019; 56
Morris (10.1016/j.advengsoft.2019.03.005_bib0039) 1993; 35
Shepard (10.1016/j.advengsoft.2019.03.005_bib0011) 1968
Bouhlel (10.1016/j.advengsoft.2019.03.005_bib0033) 2018; 50
Le Gratiet (10.1016/j.advengsoft.2019.03.005_sbref0022) 2013
Hwang (10.1016/j.advengsoft.2019.03.005_bib0030) 2019
Shang (10.1016/j.advengsoft.2019.03.005_bib0036) 2006; 14
Powell (10.1016/j.advengsoft.2019.03.005_sbref0013) 1994
Li (10.1016/j.advengsoft.2019.03.005_bib0014) 2019; 57
An (10.1016/j.advengsoft.2019.03.005_bib0023) 2001; 17
Martins (10.1016/j.advengsoft.2019.03.005_bib0017) 2013; 51
Hwang (10.1016/j.advengsoft.2019.03.005_bib0019) 2018; 44
Bettebghor (10.1016/j.advengsoft.2019.03.005_bib0020) 2011; 43
References_xml – volume: 35
  start-page: 243
  year: 1993
  end-page: 255
  ident: bib0039
  article-title: Bayesian design and analysis of computer experiments: use of derivatives in surface prediction
  publication-title: Technometrics
– volume: 46
  start-page: 863
  year: 2008
  end-page: 873
  ident: bib0024
  article-title: ADjoint: an approach for the rapid development of discrete adjoint solvers
  publication-title: AIAA J
– reference: Lyu Z, Kenway GK, Paige C, Martins JRRA. Automatic differentiation adjoint of the Reynolds-averaged Navier–Stokes equations with a turbulence model. In: Proceedings of the twenty-first AIAA computational fluid dynamics conference. San Diego, CA; doi:
– year: 2001
  ident: bib0012
  publication-title: The elements of statistical learning
– volume: 51
  start-page: 2049
  year: 2013
  end-page: 2075
  ident: bib0017
  article-title: Multidisciplinary design optimization: a survey of architectures
  publication-title: AIAA J
– volume: 1
  start-page: 157
  year: 2019
  end-page: 173
  ident: bib0006
  article-title: Gradient-enhanced kriging for high-dimensional problems
  publication-title: Eng Comput
– volume: 25
  start-page: 177
  year: 2013
  end-page: 189
  ident: bib0021
  article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp Sci Technol
– year: 2016
  ident: bib0005
  article-title: An improved approach for estimating the hyperparameters of the kriging model for high-dimensional problems through the partial least squares method
  publication-title: Math Probl Eng
– year: 2019
  ident: bib0030
  article-title: High-fidelity design-allocation optimization of a commercial aircraft maximizing airline profit
  publication-title: J Aircr
– reference: Noesis Solutions. OPTIMUS. 2009.
– volume: 44
  start-page: Article37
  year: 2018
  ident: bib0019
  article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives
  publication-title: ACM Trans Math Softw
– volume: 46
  start-page: 273
  year: 2012
  end-page: 284
  ident: bib0031
  article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes
  publication-title: Struct Multidiscip Optim
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0001
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 137
  start-page: 021407
  year: 2015
  ident: bib0037
  article-title: Trust region based mode pursuing sampling method for global optimization of high dimensional design problems
  publication-title: J Mech Des
– year: 2019
  ident: bib0016
  article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization
  publication-title: Structural and Multidisciplinary Optimization
– volume: 56
  start-page: 369
  year: 2019
  end-page: 384
  ident: bib0029
  article-title: Impact of morphing trailing edge on mission performance for the common research model
  publication-title: J Aircr
– volume: Green Aviation
  start-page: 75
  year: 2016
  end-page: 79
  ident: bib0028
  article-title: Fuel burn reduction through wing morphing
  publication-title: Encyclopedia of aerospace engineering
– volume: 14
  start-page: 119
  year: 2006
  end-page: 126
  ident: bib0036
  article-title: A note on the extended rOsenbrock function
  publication-title: Evol Compuat
– year: 2006
  ident: bib0003
  publication-title: Gaussian processes for machine learning
– volume: 57
  start-page: 581
  year: 2019
  end-page: 596
  ident: bib0014
  article-title: Data-based approach for fast airfoil analysis and optimization
  publication-title: J Aircr
– year: 2018
  ident: bib0034
  article-title: Large-scale multidisciplinary optimization of an electric aircraft for on-demand mobility
  publication-title: Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, FL
– start-page: 51
  year: 1994
  end-page: 67
  ident: bib0013
– volume: 186
  start-page: 311
  year: 1998
  end-page: 338
  ident: bib0040
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput Methods Appl Mech Eng
– volume: 134
  start-page: 268
  year: 2005
  end-page: 287
  ident: bib0008
  article-title: An efficient algorithm for constructing optimal design of computer experiments
  publication-title: J Stat Plan Inference
– year: 2006
  ident: bib0038
  article-title: A comparison of metamodeling methods using practical industry requirements
  publication-title: Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI
– volume: 43
  start-page: 243
  year: 2011
  end-page: 259
  ident: bib0020
  article-title: Surrogate modeling approximation using a mixture of experts based on em joint estimation
  publication-title: Struct Multidiscip Optim
– volume: 51
  start-page: 2582
  year: 2013
  end-page: 2599
  ident: bib0018
  article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models
  publication-title: AIAA J
– volume: 31
  start-page: 41
  year: 1989
  end-page: 47
  ident: bib0009
  article-title: Designs for computer experiments
  publication-title: Technometrics
– volume: 11
  start-page: 2051
  year: 2010
  end-page: 2055
  ident: bib0002
  article-title: A surrogate modeling and adaptive sampling toolbox for computer based design
  publication-title: J Mach Learn Res
– start-page: 517
  year: 1968
  end-page: 524
  ident: bib0011
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: Proceedings of the twenty-third ACM national conference, ACM ’68
– year: 2013
  ident: bib0022
  publication-title: Multi-fidelity gaussian process regression for computer experiments
– volume: 53
  start-page: 935
  year: 2016
  end-page: 952
  ident: bib0004
  article-title: Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction
  publication-title: Struct Multidiscip Optim
– reference: .
– volume: 54
  start-page: 113
  year: 2016
  end-page: 128
  ident: bib0026
  article-title: Multipoint aerodynamic shape optimization investigations of the common research model wing
  publication-title: AIAA J
– start-page: 105
  year: 1992
  end-page: 210
  ident: bib0010
  publication-title: The theory of radial basis function approximation in 1990
– volume: 17
  start-page: 588
  year: 2001
  end-page: 607
  ident: bib0023
  article-title: Quasi-regression
  publication-title: J Complex
– volume: 51
  start-page: 144
  year: 2014
  end-page: 160
  ident: bib0027
  article-title: Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration
  publication-title: J Aircr
– year: 2008
  ident: bib0035
  publication-title: Engineering design via surrogate modelling-A practical guide.
– volume: 50
  start-page: 2038
  year: 2018
  end-page: 2053
  ident: bib0033
  article-title: Efficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares method
  publication-title: Eng Optim
– volume: 75
  start-page: 74
  year: 2018
  end-page: 87
  ident: bib0007
  article-title: A fast-prediction surrogate model for large datasets
  publication-title: Aerosp Sci Technol
– year: 2019
  ident: bib0015
  article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design
  publication-title: Aerosp Sci Technol
– year: 2006
  ident: 10.1016/j.advengsoft.2019.03.005_bib0003
– volume: 75
  start-page: 74
  year: 2018
  ident: 10.1016/j.advengsoft.2019.03.005_bib0007
  article-title: A fast-prediction surrogate model for large datasets
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2017.12.030
– volume: 51
  start-page: 144
  issue: 1
  year: 2014
  ident: 10.1016/j.advengsoft.2019.03.005_bib0027
  article-title: Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration
  publication-title: J Aircr
  doi: 10.2514/1.C032150
– volume: 51
  start-page: 2049
  issue: 9
  year: 2013
  ident: 10.1016/j.advengsoft.2019.03.005_bib0017
  article-title: Multidisciplinary design optimization: a survey of architectures
  publication-title: AIAA J
  doi: 10.2514/1.J051895
– year: 2006
  ident: 10.1016/j.advengsoft.2019.03.005_bib0038
  article-title: A comparison of metamodeling methods using practical industry requirements
– volume: Green Aviation
  start-page: 75
  year: 2016
  ident: 10.1016/j.advengsoft.2019.03.005_sbref0027
  article-title: Fuel burn reduction through wing morphing
– year: 2008
  ident: 10.1016/j.advengsoft.2019.03.005_sbref0033
– start-page: 517
  year: 1968
  ident: 10.1016/j.advengsoft.2019.03.005_bib0011
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0016
  article-title: OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-019-02211-z
– year: 2018
  ident: 10.1016/j.advengsoft.2019.03.005_bib0034
  article-title: Large-scale multidisciplinary optimization of an electric aircraft for on-demand mobility
– volume: 56
  start-page: 369
  issue: 1
  year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0029
  article-title: Impact of morphing trailing edge on mission performance for the common research model
  publication-title: J Aircr
  doi: 10.2514/1.C034967
– volume: 186
  start-page: 311
  issue: 2–4
  year: 1998
  ident: 10.1016/j.advengsoft.2019.03.005_bib0040
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput Methods Appl Mech Eng
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.advengsoft.2019.03.005_bib0001
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 588
  issue: 4
  year: 2001
  ident: 10.1016/j.advengsoft.2019.03.005_bib0023
  article-title: Quasi-regression
  publication-title: J Complex
  doi: 10.1006/jcom.2001.0588
– volume: 137
  start-page: 021407
  issue: 2
  year: 2015
  ident: 10.1016/j.advengsoft.2019.03.005_bib0037
  article-title: Trust region based mode pursuing sampling method for global optimization of high dimensional design problems
  publication-title: J Mech Des
  doi: 10.1115/1.4029219
– volume: 50
  start-page: 2038
  issue: 12
  year: 2018
  ident: 10.1016/j.advengsoft.2019.03.005_bib0033
  article-title: Efficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares method
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2017.1419344
– volume: 11
  start-page: 2051
  year: 2010
  ident: 10.1016/j.advengsoft.2019.03.005_bib0002
  article-title: A surrogate modeling and adaptive sampling toolbox for computer based design
  publication-title: J Mach Learn Res
– volume: 1
  start-page: 157
  issue: 35
  year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0006
  article-title: Gradient-enhanced kriging for high-dimensional problems
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0590-x
– year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0015
  article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.03.041
– ident: 10.1016/j.advengsoft.2019.03.005_bib0025
  doi: 10.2514/6.2013-2581
– year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0030
  article-title: High-fidelity design-allocation optimization of a commercial aircraft maximizing airline profit
  publication-title: J Aircr
  doi: 10.2514/1.C035082
– volume: 53
  start-page: 935
  issue: 5
  year: 2016
  ident: 10.1016/j.advengsoft.2019.03.005_bib0004
  article-title: Improving kriging surrogates of high-dimensional design models by partial least squares dimension reduction
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-015-1395-9
– year: 2001
  ident: 10.1016/j.advengsoft.2019.03.005_bib0012
– volume: 43
  start-page: 243
  issue: 2
  year: 2011
  ident: 10.1016/j.advengsoft.2019.03.005_bib0020
  article-title: Surrogate modeling approximation using a mixture of experts based on em joint estimation
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-010-0554-2
– volume: 35
  start-page: 243
  issue: 3
  year: 1993
  ident: 10.1016/j.advengsoft.2019.03.005_bib0039
  article-title: Bayesian design and analysis of computer experiments: use of derivatives in surface prediction
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485320
– volume: 44
  start-page: Article37
  issue: 4
  year: 2018
  ident: 10.1016/j.advengsoft.2019.03.005_bib0019
  article-title: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives
  publication-title: ACM Trans Math Softw
  doi: 10.1145/3182393
– volume: 134
  start-page: 268
  issue: 1
  year: 2005
  ident: 10.1016/j.advengsoft.2019.03.005_bib0008
  article-title: An efficient algorithm for constructing optimal design of computer experiments
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2004.02.014
– volume: 46
  start-page: 273
  year: 2012
  ident: 10.1016/j.advengsoft.2019.03.005_bib0031
  article-title: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-012-0763-y
– volume: 31
  start-page: 41
  issue: 1
  year: 1989
  ident: 10.1016/j.advengsoft.2019.03.005_bib0009
  article-title: Designs for computer experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1989.10488474
– volume: 57
  start-page: 581
  issue: 2
  year: 2019
  ident: 10.1016/j.advengsoft.2019.03.005_bib0014
  article-title: Data-based approach for fast airfoil analysis and optimization
  publication-title: J Aircr
– year: 2013
  ident: 10.1016/j.advengsoft.2019.03.005_sbref0022
– start-page: 105
  year: 1992
  ident: 10.1016/j.advengsoft.2019.03.005_bib0010
– year: 2016
  ident: 10.1016/j.advengsoft.2019.03.005_sbref0005
  article-title: An improved approach for estimating the hyperparameters of the kriging model for high-dimensional problems through the partial least squares method
  publication-title: Math Probl Eng
  doi: 10.1155/2016/6723410
– volume: 46
  start-page: 863
  issue: 4
  year: 2008
  ident: 10.1016/j.advengsoft.2019.03.005_bib0024
  article-title: ADjoint: an approach for the rapid development of discrete adjoint solvers
  publication-title: AIAA J
  doi: 10.2514/1.29123
– volume: 54
  start-page: 113
  issue: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2019.03.005_bib0026
  article-title: Multipoint aerodynamic shape optimization investigations of the common research model wing
  publication-title: AIAA J
  doi: 10.2514/1.J054154
– start-page: 51
  year: 1994
  ident: 10.1016/j.advengsoft.2019.03.005_sbref0013
– volume: 51
  start-page: 2582
  issue: 11
  year: 2013
  ident: 10.1016/j.advengsoft.2019.03.005_bib0018
  article-title: Review and unification of methods for computing derivatives of multidisciplinary computational models
  publication-title: AIAA J
  doi: 10.2514/1.J052184
– volume: 25
  start-page: 177
  issue: 1
  year: 2013
  ident: 10.1016/j.advengsoft.2019.03.005_bib0021
  article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2012.01.006
– ident: 10.1016/j.advengsoft.2019.03.005_bib0032
– volume: 14
  start-page: 119
  issue: 1
  year: 2006
  ident: 10.1016/j.advengsoft.2019.03.005_bib0036
  article-title: A note on the extended rOsenbrock function
  publication-title: Evol Compuat
  doi: 10.1162/evco.2006.14.1.119
SSID ssj0014021
Score 2.6449335
Snippet The surrogate modeling toolbox (SMT) is an open-source Python package that contains a collection of surrogate modeling methods, sampling techniques, and...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 102662
SubjectTerms Computer Science
Derivatives
Engineering Sciences
Gradient-enhanced surrogate modeling
Mathematics
Physics
Surrogate modeling
Title A Python surrogate modeling framework with derivatives
URI https://dx.doi.org/10.1016/j.advengsoft.2019.03.005
https://hal.science/hal-02294310
Volume 135
WOSCitedRecordID wos000502030600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELeydJPWh310m9p9CU17Q1RAAdvaE9tapVsaRVsm5c0yBpZUKVSQpN1_vzO2gWmblD1MkaxgMBjfYf98_vkOobfE5TAouxw-JMKdIEiEw2FgdxKCMQ88zHnSRC0Z48mEzOd0OhhszF6Y7QoXBbm9pdf_VdSQB8KWW2f_QdztTSED_oPQIQWxQ7qT4GN7-kM6BLDrTVWV0kqmwt00lElDxVL21xTqs208f9d9kBorXkDDlM06f4V2DV32jWSKSedOlPo9K8L7crPQC_4X5QIektrxVW_JfnTDO-qvPTvuDKjVulQ7tCfSir9atkXGPOcq7vsXtZp_teybKLyOg6XtZnqQ7xsfo9ChVAXv-a0TV_aEy2OeQn__Xb6bpOBpZ7RhN3CZxfpR_JVNP56x8fnk869ne2TDUTyGFN7DAdRCATa5W5g07_k4pGSI9uLz0_mndvkJJtVNqEVTTU0BU8TAP1frb7jmzsJY6BvEMnuEHuiphhUrFXmMBllxgB7qaYelO_UaskxkD5N3gPZ7birh6KL17QuX32tIw6J-gqLYUqpmtapmGVWzWlWzpKpZPVV7ir6dnc4-jBwdh8MR0BBrB2cAYgFIE465m3oZSfPcSwFoRokXiSAn3M9DKojAQSAynyYhgO4oy3ORpl7ui5NnaFiURXaIrASwEPwwiQIShFnKBRaZSAKS-jz3aX6EsGlFJrSTehkrZcUMG_GSde3PZPsz94RB-x8hry15rRy17FDmnREU04BTAUkGqrhD6Tcg2_Zh0k87KBmTeZ2KPd_lohfofvfZvETDdbXJXqG7Yrte1tVrrZw_AQQdrR8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Python+surrogate+modeling+framework+with+derivatives&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Bouhlel%2C+Mohamed+Amine&rft.au=Hwang%2C+John+T.&rft.au=Bartoli%2C+Nathalie&rft.au=Lafage%2C+R%C3%A9mi&rft.date=2019-09-01&rft.pub=Elsevier&rft.issn=0965-9978&rft_id=info:doi/10.1016%2Fj.advengsoft.2019.03.005&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02294310v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon