Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features

The use of deep learning (DL) methods for change detection (CD) is currently dominated by supervised models that require a large number of labeled samples. However, these samples are difficult to acquire in the multitemporal case. A possible alternative is leveraging methods that exploit transfer le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 60; S. 1 - 19
Hauptverfasser: Bergamasco, Luca, Saha, Sudipan, Bovolo, Francesca, Bruzzone, Lorenzo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!