A low-weight trellis-based iterative soft-decision decoding algorithm for binary linear block codes

This paper presents a new low-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The algorithm is devised based on a set of optimality conditions and the generation of a sequence of candidate codewords for an optimality test. The initial candidate codeword...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 45; H. 2; S. 731 - 741
Hauptverfasser: Koumoto, T., Takata, T., Kasami, T., Shu Lin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.1999
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new low-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The algorithm is devised based on a set of optimality conditions and the generation of a sequence of candidate codewords for an optimality test. The initial candidate codeword is generated by a simple decoding method. The subsequent candidate codewords, if needed, are generated by a chain of low-weight trellis searches, one at a time. Each search is conducted through a low-weight trellis diagram centered around the latest candidate codeword and results in an improvement over the previous candidate codewords that have been already tested. This improvement is then used as the next candidate codeword for a test of optimality. The decoding iteration stops whenever a candidate codeword is found to satisfy a sufficient condition on optimality or the latest low-weight trellis search results in a repetition of a previously generated candidate codeword. A divide-and-conquer technique is also presented for codes that are not spanned by their minimum-weight codewords. The proposed decoding algorithm has been applied to some well-known codes of lengths 48, 64, and 128. Simulation results show that the proposed algorithm achieves either practically optimal error performance for the example codes of length 48 and 64 or near optimal error performance for the (128, 29, 32) RM code with a significant reduction in computational decoding complexity.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.749023