A high performance neural network model for solving chance constrained optimization problems

This paper presents a neural network model to solve chance constrained optimization (CCO) problems. The main idea is to convert the chance constrained problem into an equivalent convex second order cone programming (CSOCP) problem. A neural network model is then constructed for solving the obtained...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 121; s. 540 - 550
Hlavní autoři: Nazemi, Alireza, Tahmasbi, Narges
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 09.12.2013
Elsevier
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a neural network model to solve chance constrained optimization (CCO) problems. The main idea is to convert the chance constrained problem into an equivalent convex second order cone programming (CSOCP) problem. A neural network model is then constructed for solving the obtained CSOCP problem. By employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem. The simulation results also show that the proposed neural network is feasible and efficient.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2013.05.034