Machine learning-based cache miss prediction

Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal on software tools for technology transfer Ročník 27; číslo 1; s. 53 - 80
Hlavní autoři: Jelačić, Edin, Seceleanu, Cristina, Xiong, Ning, Backeman, Peter, Yaghoobi, Sharifeh, Seceleanu, Tiberiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Témata:
ISSN:1433-2779, 1433-2787, 1433-2787
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model “learns” cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations.
AbstractList Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model "learns" cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations.
Author Jelačić, Edin
Seceleanu, Cristina
Backeman, Peter
Xiong, Ning
Yaghoobi, Sharifeh
Seceleanu, Tiberiu
Author_xml – sequence: 1
  givenname: Edin
  surname: Jelačić
  fullname: Jelačić, Edin
  email: edin.jelacic@mdu.se
  organization: Mälardalen University
– sequence: 2
  givenname: Cristina
  surname: Seceleanu
  fullname: Seceleanu, Cristina
  organization: Mälardalen University
– sequence: 3
  givenname: Ning
  surname: Xiong
  fullname: Xiong, Ning
  organization: Mälardalen University
– sequence: 4
  givenname: Peter
  surname: Backeman
  fullname: Backeman, Peter
  organization: Mälardalen University
– sequence: 5
  givenname: Sharifeh
  surname: Yaghoobi
  fullname: Yaghoobi, Sharifeh
  organization: Mälardalen University
– sequence: 6
  givenname: Tiberiu
  surname: Seceleanu
  fullname: Seceleanu, Tiberiu
  organization: Mälardalen University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-71286$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNp9kEtLAzEUhYNUsFb_gKsBt43ePCbJLEt9QsWNug2ZJNOmtDM1mSL-e6dOVXDRzc0lfCc555yiQd3UHqELAlcEQF6nbkKBgeYYQAFgcYSGhDOGqVRy8LvL4gSdprQEIFLIYojGT8YuQu2zlTexDvUclyZ5l9nu2mfrkFK2id4F24amPkPHlVklf74_R-j17vZl-oBnz_eP08kMWw60xYyo3JEyz43gQpaW84qC45RYTrgDIyonSuLAgWe5tJbaXBXeClrl3JaFYSM07t9NH36zLfUmhrWJn7oxQd-Et4lu4lyv3UJLQpXo8Mse38TmfetTq5fNNtadQ80oITJnVKmOUj1lY5NS9JW2oTW7WG00YaUJ6F2Vuq9Sd1Xq7yr17gP6T_rj6KCI7UN0cD338c_VAdUX16iGzw
CitedBy_id crossref_primary_10_1007_s10009_025_00807_z
Cites_doi 10.1186/S40537-021-00444-8
10.1109/SC41404.2022.00084
10.1007/s10472-020-09723-1
10.1016/j.physd.2019.132306
10.1145/1250734.1250746
10.1145/1064978.1065034
10.1145/2151024.2151043
10.5281/zenodo.3509134
10.1109/ICETECH.2016.7569243
10.1109/EECSI59885.2023.10295817
10.1145/3132402.3132405
10.1145/3643991.3644898
10.1109/SC41406.2024.00072
10.1162/NECO.1997.9.8.1735
10.1145/3319647.3325828
10.1145/3656012
10.1109/12.752659
10.1145/2133382.2133384
10.1109/IISWC.2015.29
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Feb 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
DOI 10.1007/s10009-025-00800-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SWEPUB Mälardalens högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Mälardalens högskola
SwePub Articles full text
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1433-2787
EndPage 80
ExternalDocumentID oai_DiVA_org_mdh_71286
10_1007_s10009_025_00800_6
GrantInformation_xml – fundername: Mälardalen University
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8AO
8FE
8FG
8FW
8G5
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
L6V
LAS
LLZTM
M2O
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9O
PADUT
PF0
PHGZM
PHGZT
PMFND
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
ID FETCH-LOGICAL-c402t-3185d1b55a6467bc44f20d421c414d0a6fd6b1d0d0e357cc2c589ec62f54cb9a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472171800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-2779
1433-2787
IngestDate Wed Nov 05 04:14:06 EST 2025
Wed Nov 05 08:26:33 EST 2025
Sat Nov 29 07:51:47 EST 2025
Tue Nov 18 22:31:19 EST 2025
Tue May 27 01:14:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Simulation
Machine learning
Cache
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c402t-3185d1b55a6467bc44f20d421c414d0a6fd6b1d0d0e357cc2c589ec62f54cb9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10009-025-00800-6
PQID 3211753288
PQPubID 46652
PageCount 28
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_71286
proquest_journals_3211753288
crossref_citationtrail_10_1007_s10009_025_00800_6
crossref_primary_10_1007_s10009_025_00800_6
springer_journals_10_1007_s10009_025_00800_6
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal on software tools for technology transfer
PublicationTitleAbbrev Int J Softw Tools Technol Transfer
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T. Akiba (800_CR1) 2019
C.G. Lee (800_CR19) 2019
Y. Yang (800_CR35) 2023
L. Alzubaidi (800_CR2) 2021; 8
C. Carvalho (800_CR5) 2002
C.K. Luk (800_CR22) 2005; 40
S. Kumar (800_CR15) 2016
N. Nethercote (800_CR24) 2007
J.L. Hennessy (800_CR9) 2012
H. Kwak (800_CR16) 1999; 48
S. Pandey (800_CR27) 2024; 8
A. Sherstinsky (800_CR31) 2020; 404
800_CR18
800_CR12
800_CR34
800_CR11
J. Lee (800_CR17) 2023
800_CR33
800_CR32
D. Bruening (800_CR4) 2012
A. Kopytov (800_CR13) 2012
S. Hochreiter (800_CR10) 1997; 9
L. Li (800_CR20) 2022; 6
C. Mendis (800_CR23) 2019
S. Pandey (800_CR26) 2022
A. Sandberg (800_CR30) 2015
F. Bellard (800_CR3) 2005
D. Etiemble (800_CR8) 2018
800_CR29
J. Castaño (800_CR6) 2024
800_CR28
800_CR25
800_CR7
A. Kratsios (800_CR14) 2019; 89
Y. Zeng (800_CR36) 2017
800_CR21
References_xml – volume: 8
  start-page: 1
  year: 2021
  ident: 800_CR2
  publication-title: J. Big Data
  doi: 10.1186/S40537-021-00444-8
– start-page: 4505
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: 800_CR23
– start-page: 41
  volume-title: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC’05
  year: 2005
  ident: 800_CR3
– ident: 800_CR11
– start-page: 1
  volume-title: SC22: International Conference for High Performance Computing, Networking, Storage and Analysis
  year: 2022
  ident: 800_CR26
  doi: 10.1109/SC41404.2022.00084
– start-page: 2
  volume-title: Sysbench Manual
  year: 2012
  ident: 800_CR13
– volume: 89
  start-page: 435
  year: 2019
  ident: 800_CR14
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-020-09723-1
– volume: 404
  year: 2020
  ident: 800_CR31
  publication-title: Phys. D, Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– ident: 800_CR34
– ident: 800_CR32
– start-page: 89
  volume-title: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’07
  year: 2007
  ident: 800_CR24
  doi: 10.1145/1250734.1250746
– ident: 800_CR7
– ident: 800_CR28
– volume: 40
  start-page: 190
  issue: 6
  year: 2005
  ident: 800_CR22
  publication-title: ACM SIGPLAN Not.
  doi: 10.1145/1064978.1065034
– volume-title: Transparent Dynamic Instrumentation
  year: 2012
  ident: 800_CR4
  doi: 10.1145/2151024.2151043
– ident: 800_CR33
  doi: 10.5281/zenodo.3509134
– start-page: 210
  volume-title: Proceedings of 2nd IEEE International Conference on Engineering and Technology, ICETECH 2016
  year: 2016
  ident: 800_CR15
  doi: 10.1109/ICETECH.2016.7569243
– start-page: 328
  volume-title: 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI)
  year: 2023
  ident: 800_CR17
  doi: 10.1109/EECSI59885.2023.10295817
– start-page: 305
  volume-title: Proceedings of the International Symposium on Memory Systems, MEMSYS’17
  year: 2017
  ident: 800_CR36
  doi: 10.1145/3132402.3132405
– start-page: 607
  volume-title: Proceedings of the 21st International Conference on Mining Software Repositories, MSR’24
  year: 2024
  ident: 800_CR6
  doi: 10.1145/3643991.3644898
– volume: 6
  start-page: 1
  issue: 2
  year: 2022
  ident: 800_CR20
  publication-title: Proc. ACM Meas. Anal. Comput. Syst.
– ident: 800_CR21
  doi: 10.1109/SC41406.2024.00072
– volume: 9
  start-page: 1735
  year: 1997
  ident: 800_CR10
  publication-title: Neural Comput.
  doi: 10.1162/NECO.1997.9.8.1735
– start-page: 21
  volume-title: Proceedings of the 12th ACM International Conference on Systems and Storage, SYSTOR’19
  year: 2019
  ident: 800_CR19
  doi: 10.1145/3319647.3325828
– ident: 800_CR12
– volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2019
  ident: 800_CR1
– volume: 8
  start-page: 1
  year: 2024
  ident: 800_CR27
  publication-title: Proc. ACM Meas. Anal. Comput. Syst.
  doi: 10.1145/3656012
– volume: 48
  start-page: 176
  issue: 2
  year: 1999
  ident: 800_CR16
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.752659
– ident: 800_CR29
– start-page: 15000
  volume-title: Proc. of IEEE International Conference on Control and Automation
  year: 2002
  ident: 800_CR5
– volume-title: Second Workshop on Pioneering Processor Paradigms. Vienne, Austria
  year: 2018
  ident: 800_CR8
– ident: 800_CR25
– start-page: 351
  volume-title: International Symposium on Dependable Software Engineering: Theories, Tools, and Applications
  year: 2023
  ident: 800_CR35
– volume-title: Computer Architecture: A Quantitative Approach
  year: 2012
  ident: 800_CR9
– ident: 800_CR18
  doi: 10.1145/2133382.2133384
– start-page: 183
  volume-title: 2015 IEEE International Symposium on Workload Characterization
  year: 2015
  ident: 800_CR30
  doi: 10.1109/IISWC.2015.29
SSID ssj0017679
Score 2.3732002
Snippet Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms Algorithms
Architecture
Business metrics
Cache
Computer Science
Deep learning
Design
Hardware
Image processing
Image processing systems
Machine learning
Neural networks
Simulation
Simulators
Software
Software Engineering
Software Engineering/Programming and Operating Systems
Theory of Computation
Title Machine learning-based cache miss prediction
URI https://link.springer.com/article/10.1007/s10009-025-00800-6
https://www.proquest.com/docview/3211753288
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-71286
Volume 27
WOSCitedRecordID wos001472171800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: RSV
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQUAaYqKXE8SMeK6BigArxqLpZ8SOlErRVUvj9xK6TAkJIMMc5W_fwXXJ33wFwmklDGGccYpVpiGWoYRmFSGhIbDhOTSqlA3G9Yf1-MhzyO98UVlTV7lVK0t3Un5rd3I98RKALcyBdBWulu0usOd4_DOrcAaMOYa8MBGKIGOO-VeZnGl_d0TLGrNOi3yBEndvpNf934C2w6cPMoLvQi22wYiY7oFmNcAi8Re-Czq0rpjSBnx4xgtat6UBZnOeg1IEimOU2l2PltweeelePF9fQD1CAqvwsnLvOaB1JQlJa3odSYZyhUGMUKRxhHaY001RGOtShiQlTCimScKMoyghWkqfxPmhMphNzAIIkU5iGPKYqDnGkjcwsFhlLnFVnkWmBqOKjUB5d3A65eBFLXGTLDlGyQzh2CNoC5_U7swW2xq-r25V4hLezQsTIQY2iJGmBTiWF5ePfqJ0txFrvbHG2L8eDrpjmI_GqnwUrXTc9_BvZI7CBnMBtvUsbNOb5mzkG6-p9Pi7yE6enHyx030s
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8omuiL-BlR1D3okzTZR9duj0QlGIEYRcJbs34MSRQIQ_9-27KBGmOiz-uuzX30bru73wGcp1yFNKYxwiKVCHNXIh2FcKTCQMU4UQnnFsS1RTudqN-P7_OmsKyodi9Skvam_tTsZn_k-yGyYQ4iq7CGtccyhXwPj71F7oASi7CnA4EA-ZTGeavMzzS-uqNljLlIi36DELVup1H-34G3YSsPM536XC92YEWNdqFcjHBwcoveg1rbFlMqJ58eMUDGrUlHGJxnR-tA5kymJpdj5LcPT42b7lUT5QMUkNCfhTPbGS09HoYJ0fchFxinvis1zwT2sHQTkkrCPelKVwUhFcIXYRQrQfw0xILHSXAApdF4pA7BiVKBiRsHRAQu9qTiqcEio5G16tRTFfAKPjKRo4ubIRcvbImLbNjBNDuYZQcjFbhcvDOZY2v8urpaiIfldpaxwLdQo34UVaBWSGH5-DdqF3OxLnY2ONvXw16djacD9iqfGdWumxz9jewZbDS77RZr3XbujmHTt8I3tS9VKM2mb-oE1sX7bJhNT63OfgCsg-Iv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGuOL-Bnxcw_6JA1b17XboxGJRiQkKuGtWb_URIEA-ve7lg3QGBLj87Zbcx-9a-_udwBnRuiIJSxBRBqFiPAVyqIQgXQU6oSkOhXCgbg2WasVd7tJe66L31W7FynJSU-DRWnqjWsDZWpzjW_uUh9HyIU8iC7DCrFDg-x5_aEzzSMw6tD2sqAgRJixJG-b-Z3Gd9c0izenKdIfcKLOBTXK_1_8Jmzk4ad3OdGXLVjSvW0oF6MdvNzSd6B674ostZdPlXhG1t0pT1r8Zy_TjZE3GNocj5XrLjw1rh-vblA-WAHJ7Lg4dh3TKhBRlNJsnxSSEIN9RXAgSUCUn1KjqAiUr3wdRkxKLKM40ZJiExEpkjTcg1Kv39P74MVGEuonIZWhTwKlhbEYZSx21m4CXYGg4CmXOeq4HX7xxmd4yZYdPGMHd-zgtAIX028GE8yNhW8fFaLiuf2NeIgdBCmO4wpUC4nMHi-idj4R8fTPFn-7_tq55P3hM39XL5xlLp0e_I3sKay16w3evG3dHcI6drK3JTFHUBoPP_QxrMrP8etoeOLU9wuVy-sT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+cache+miss+prediction&rft.jtitle=International+journal+on+software+tools+for+technology+transfer&rft.au=Jela%C4%8Di%C4%87%2C+Edin&rft.au=Seceleanu%2C+Cristina&rft.au=Xiong%2C+Ning&rft.au=Backeman%2C+Peter&rft.date=2025-02-01&rft.issn=1433-2779&rft.eissn=1433-2787&rft.volume=27&rft.issue=1&rft.spage=53&rft.epage=80&rft_id=info:doi/10.1007%2Fs10009-025-00800-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10009_025_00800_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2779&client=summon