Machine learning-based cache miss prediction
Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep...
Uloženo v:
| Vydáno v: | International journal on software tools for technology transfer Ročník 27; číslo 1; s. 53 - 80 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1433-2779, 1433-2787, 1433-2787 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model “learns” cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations. |
|---|---|
| AbstractList | Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model "learns" cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations. |
| Author | Jelačić, Edin Seceleanu, Cristina Backeman, Peter Xiong, Ning Yaghoobi, Sharifeh Seceleanu, Tiberiu |
| Author_xml | – sequence: 1 givenname: Edin surname: Jelačić fullname: Jelačić, Edin email: edin.jelacic@mdu.se organization: Mälardalen University – sequence: 2 givenname: Cristina surname: Seceleanu fullname: Seceleanu, Cristina organization: Mälardalen University – sequence: 3 givenname: Ning surname: Xiong fullname: Xiong, Ning organization: Mälardalen University – sequence: 4 givenname: Peter surname: Backeman fullname: Backeman, Peter organization: Mälardalen University – sequence: 5 givenname: Sharifeh surname: Yaghoobi fullname: Yaghoobi, Sharifeh organization: Mälardalen University – sequence: 6 givenname: Tiberiu surname: Seceleanu fullname: Seceleanu, Tiberiu organization: Mälardalen University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-71286$$DView record from Swedish Publication Index (Mälardalens högskola) |
| BookMark | eNp9kEtLAzEUhYNUsFb_gKsBt43ePCbJLEt9QsWNug2ZJNOmtDM1mSL-e6dOVXDRzc0lfCc555yiQd3UHqELAlcEQF6nbkKBgeYYQAFgcYSGhDOGqVRy8LvL4gSdprQEIFLIYojGT8YuQu2zlTexDvUclyZ5l9nu2mfrkFK2id4F24amPkPHlVklf74_R-j17vZl-oBnz_eP08kMWw60xYyo3JEyz43gQpaW84qC45RYTrgDIyonSuLAgWe5tJbaXBXeClrl3JaFYSM07t9NH36zLfUmhrWJn7oxQd-Et4lu4lyv3UJLQpXo8Mse38TmfetTq5fNNtadQ80oITJnVKmOUj1lY5NS9JW2oTW7WG00YaUJ6F2Vuq9Sd1Xq7yr17gP6T_rj6KCI7UN0cD338c_VAdUX16iGzw |
| CitedBy_id | crossref_primary_10_1007_s10009_025_00807_z |
| Cites_doi | 10.1186/S40537-021-00444-8 10.1109/SC41404.2022.00084 10.1007/s10472-020-09723-1 10.1016/j.physd.2019.132306 10.1145/1250734.1250746 10.1145/1064978.1065034 10.1145/2151024.2151043 10.5281/zenodo.3509134 10.1109/ICETECH.2016.7569243 10.1109/EECSI59885.2023.10295817 10.1145/3132402.3132405 10.1145/3643991.3644898 10.1109/SC41406.2024.00072 10.1162/NECO.1997.9.8.1735 10.1145/3319647.3325828 10.1145/3656012 10.1109/12.752659 10.1145/2133382.2133384 10.1109/IISWC.2015.29 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ABGEM ADTPV AOWAS D8T DF7 ZZAVC |
| DOI | 10.1007/s10009-025-00800-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SWEPUB Mälardalens högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Mälardalens högskola SwePub Articles full text |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Architecture |
| EISSN | 1433-2787 |
| EndPage | 80 |
| ExternalDocumentID | oai_DiVA_org_mdh_71286 10_1007_s10009_025_00800_6 |
| GrantInformation_xml | – fundername: Mälardalen University |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8AO 8FE 8FG 8FW 8G5 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV L6V LAS LLZTM M2O M4Y M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9O PADUT PF0 PHGZM PHGZT PMFND PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB 7SC 8FD JQ2 L7M L~C L~D ABGEM ADTPV AOWAS D8T DF7 ZZAVC |
| ID | FETCH-LOGICAL-c402t-3185d1b55a6467bc44f20d421c414d0a6fd6b1d0d0e357cc2c589ec62f54cb9a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001472171800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-2779 1433-2787 |
| IngestDate | Wed Nov 05 04:14:06 EST 2025 Wed Nov 05 08:26:33 EST 2025 Sat Nov 29 07:51:47 EST 2025 Tue Nov 18 22:31:19 EST 2025 Tue May 27 01:14:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Simulation Machine learning Cache |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c402t-3185d1b55a6467bc44f20d421c414d0a6fd6b1d0d0e357cc2c589ec62f54cb9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10009-025-00800-6 |
| PQID | 3211753288 |
| PQPubID | 46652 |
| PageCount | 28 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mdh_71286 proquest_journals_3211753288 crossref_citationtrail_10_1007_s10009_025_00800_6 crossref_primary_10_1007_s10009_025_00800_6 springer_journals_10_1007_s10009_025_00800_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal on software tools for technology transfer |
| PublicationTitleAbbrev | Int J Softw Tools Technol Transfer |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | T. Akiba (800_CR1) 2019 C.G. Lee (800_CR19) 2019 Y. Yang (800_CR35) 2023 L. Alzubaidi (800_CR2) 2021; 8 C. Carvalho (800_CR5) 2002 C.K. Luk (800_CR22) 2005; 40 S. Kumar (800_CR15) 2016 N. Nethercote (800_CR24) 2007 J.L. Hennessy (800_CR9) 2012 H. Kwak (800_CR16) 1999; 48 S. Pandey (800_CR27) 2024; 8 A. Sherstinsky (800_CR31) 2020; 404 800_CR18 800_CR12 800_CR34 800_CR11 J. Lee (800_CR17) 2023 800_CR33 800_CR32 D. Bruening (800_CR4) 2012 A. Kopytov (800_CR13) 2012 S. Hochreiter (800_CR10) 1997; 9 L. Li (800_CR20) 2022; 6 C. Mendis (800_CR23) 2019 S. Pandey (800_CR26) 2022 A. Sandberg (800_CR30) 2015 F. Bellard (800_CR3) 2005 D. Etiemble (800_CR8) 2018 800_CR29 J. Castaño (800_CR6) 2024 800_CR28 800_CR25 800_CR7 A. Kratsios (800_CR14) 2019; 89 Y. Zeng (800_CR36) 2017 800_CR21 |
| References_xml | – volume: 8 start-page: 1 year: 2021 ident: 800_CR2 publication-title: J. Big Data doi: 10.1186/S40537-021-00444-8 – start-page: 4505 volume-title: International Conference on Machine Learning year: 2019 ident: 800_CR23 – start-page: 41 volume-title: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC’05 year: 2005 ident: 800_CR3 – ident: 800_CR11 – start-page: 1 volume-title: SC22: International Conference for High Performance Computing, Networking, Storage and Analysis year: 2022 ident: 800_CR26 doi: 10.1109/SC41404.2022.00084 – start-page: 2 volume-title: Sysbench Manual year: 2012 ident: 800_CR13 – volume: 89 start-page: 435 year: 2019 ident: 800_CR14 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-020-09723-1 – volume: 404 year: 2020 ident: 800_CR31 publication-title: Phys. D, Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – ident: 800_CR34 – ident: 800_CR32 – start-page: 89 volume-title: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’07 year: 2007 ident: 800_CR24 doi: 10.1145/1250734.1250746 – ident: 800_CR7 – ident: 800_CR28 – volume: 40 start-page: 190 issue: 6 year: 2005 ident: 800_CR22 publication-title: ACM SIGPLAN Not. doi: 10.1145/1064978.1065034 – volume-title: Transparent Dynamic Instrumentation year: 2012 ident: 800_CR4 doi: 10.1145/2151024.2151043 – ident: 800_CR33 doi: 10.5281/zenodo.3509134 – start-page: 210 volume-title: Proceedings of 2nd IEEE International Conference on Engineering and Technology, ICETECH 2016 year: 2016 ident: 800_CR15 doi: 10.1109/ICETECH.2016.7569243 – start-page: 328 volume-title: 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) year: 2023 ident: 800_CR17 doi: 10.1109/EECSI59885.2023.10295817 – start-page: 305 volume-title: Proceedings of the International Symposium on Memory Systems, MEMSYS’17 year: 2017 ident: 800_CR36 doi: 10.1145/3132402.3132405 – start-page: 607 volume-title: Proceedings of the 21st International Conference on Mining Software Repositories, MSR’24 year: 2024 ident: 800_CR6 doi: 10.1145/3643991.3644898 – volume: 6 start-page: 1 issue: 2 year: 2022 ident: 800_CR20 publication-title: Proc. ACM Meas. Anal. Comput. Syst. – ident: 800_CR21 doi: 10.1109/SC41406.2024.00072 – volume: 9 start-page: 1735 year: 1997 ident: 800_CR10 publication-title: Neural Comput. doi: 10.1162/NECO.1997.9.8.1735 – start-page: 21 volume-title: Proceedings of the 12th ACM International Conference on Systems and Storage, SYSTOR’19 year: 2019 ident: 800_CR19 doi: 10.1145/3319647.3325828 – ident: 800_CR12 – volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2019 ident: 800_CR1 – volume: 8 start-page: 1 year: 2024 ident: 800_CR27 publication-title: Proc. ACM Meas. Anal. Comput. Syst. doi: 10.1145/3656012 – volume: 48 start-page: 176 issue: 2 year: 1999 ident: 800_CR16 publication-title: IEEE Trans. Comput. doi: 10.1109/12.752659 – ident: 800_CR29 – start-page: 15000 volume-title: Proc. of IEEE International Conference on Control and Automation year: 2002 ident: 800_CR5 – volume-title: Second Workshop on Pioneering Processor Paradigms. Vienne, Austria year: 2018 ident: 800_CR8 – ident: 800_CR25 – start-page: 351 volume-title: International Symposium on Dependable Software Engineering: Theories, Tools, and Applications year: 2023 ident: 800_CR35 – volume-title: Computer Architecture: A Quantitative Approach year: 2012 ident: 800_CR9 – ident: 800_CR18 doi: 10.1145/2133382.2133384 – start-page: 183 volume-title: 2015 IEEE International Symposium on Workload Characterization year: 2015 ident: 800_CR30 doi: 10.1109/IISWC.2015.29 |
| SSID | ssj0017679 |
| Score | 2.3732002 |
| Snippet | Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 53 |
| SubjectTerms | Algorithms Architecture Business metrics Cache Computer Science Deep learning Design Hardware Image processing Image processing systems Machine learning Neural networks Simulation Simulators Software Software Engineering Software Engineering/Programming and Operating Systems Theory of Computation |
| Title | Machine learning-based cache miss prediction |
| URI | https://link.springer.com/article/10.1007/s10009-025-00800-6 https://www.proquest.com/docview/3211753288 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-71286 |
| Volume | 27 |
| WOSCitedRecordID | wos001472171800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-2787 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017679 issn: 1433-2779 databaseCode: RSV dateStart: 19971201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQUAaYqKXE8SMeK6BigArxqLpZ8SOlErRVUvj9xK6TAkJIMMc5W_fwXXJ33wFwmklDGGccYpVpiGWoYRmFSGhIbDhOTSqlA3G9Yf1-MhzyO98UVlTV7lVK0t3Un5rd3I98RKALcyBdBWulu0usOd4_DOrcAaMOYa8MBGKIGOO-VeZnGl_d0TLGrNOi3yBEndvpNf934C2w6cPMoLvQi22wYiY7oFmNcAi8Re-Czq0rpjSBnx4xgtat6UBZnOeg1IEimOU2l2PltweeelePF9fQD1CAqvwsnLvOaB1JQlJa3odSYZyhUGMUKRxhHaY001RGOtShiQlTCimScKMoyghWkqfxPmhMphNzAIIkU5iGPKYqDnGkjcwsFhlLnFVnkWmBqOKjUB5d3A65eBFLXGTLDlGyQzh2CNoC5_U7swW2xq-r25V4hLezQsTIQY2iJGmBTiWF5ePfqJ0txFrvbHG2L8eDrpjmI_GqnwUrXTc9_BvZI7CBnMBtvUsbNOb5mzkG6-p9Pi7yE6enHyx030s |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8omuiL-BlR1D3okzTZR9duj0QlGIEYRcJbs34MSRQIQ_9-27KBGmOiz-uuzX30bru73wGcp1yFNKYxwiKVCHNXIh2FcKTCQMU4UQnnFsS1RTudqN-P7_OmsKyodi9Skvam_tTsZn_k-yGyYQ4iq7CGtccyhXwPj71F7oASi7CnA4EA-ZTGeavMzzS-uqNljLlIi36DELVup1H-34G3YSsPM536XC92YEWNdqFcjHBwcoveg1rbFlMqJ58eMUDGrUlHGJxnR-tA5kymJpdj5LcPT42b7lUT5QMUkNCfhTPbGS09HoYJ0fchFxinvis1zwT2sHQTkkrCPelKVwUhFcIXYRQrQfw0xILHSXAApdF4pA7BiVKBiRsHRAQu9qTiqcEio5G16tRTFfAKPjKRo4ubIRcvbImLbNjBNDuYZQcjFbhcvDOZY2v8urpaiIfldpaxwLdQo34UVaBWSGH5-DdqF3OxLnY2ONvXw16djacD9iqfGdWumxz9jewZbDS77RZr3XbujmHTt8I3tS9VKM2mb-oE1sX7bJhNT63OfgCsg-Iv |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oGuOL-Bnxcw_6JA1b17XboxGJRiQkKuGtWb_URIEA-ve7lg3QGBLj87Zbcx-9a-_udwBnRuiIJSxBRBqFiPAVyqIQgXQU6oSkOhXCgbg2WasVd7tJe66L31W7FynJSU-DRWnqjWsDZWpzjW_uUh9HyIU8iC7DCrFDg-x5_aEzzSMw6tD2sqAgRJixJG-b-Z3Gd9c0izenKdIfcKLOBTXK_1_8Jmzk4ad3OdGXLVjSvW0oF6MdvNzSd6B674ostZdPlXhG1t0pT1r8Zy_TjZE3GNocj5XrLjw1rh-vblA-WAHJ7Lg4dh3TKhBRlNJsnxSSEIN9RXAgSUCUn1KjqAiUr3wdRkxKLKM40ZJiExEpkjTcg1Kv39P74MVGEuonIZWhTwKlhbEYZSx21m4CXYGg4CmXOeq4HX7xxmd4yZYdPGMHd-zgtAIX028GE8yNhW8fFaLiuf2NeIgdBCmO4wpUC4nMHi-idj4R8fTPFn-7_tq55P3hM39XL5xlLp0e_I3sKay16w3evG3dHcI6drK3JTFHUBoPP_QxrMrP8etoeOLU9wuVy-sT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+cache+miss+prediction&rft.jtitle=International+journal+on+software+tools+for+technology+transfer&rft.au=Jela%C4%8Di%C4%87%2C+Edin&rft.au=Seceleanu%2C+Cristina&rft.au=Xiong%2C+Ning&rft.au=Backeman%2C+Peter&rft.date=2025-02-01&rft.issn=1433-2779&rft.eissn=1433-2787&rft.volume=27&rft.issue=1&rft.spage=53&rft.epage=80&rft_id=info:doi/10.1007%2Fs10009-025-00800-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10009_025_00800_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2779&client=summon |