Machine learning-based cache miss prediction

Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal on software tools for technology transfer Ročník 27; číslo 1; s. 53 - 80
Hlavní autoři: Jelačić, Edin, Seceleanu, Cristina, Xiong, Ning, Backeman, Peter, Yaghoobi, Sharifeh, Seceleanu, Tiberiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Témata:
ISSN:1433-2779, 1433-2787, 1433-2787
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Integrating machine learning into computer architecture simulation offers a new approach to performance analysis, moving away from traditional algorithmic methods. While existing simulators accurately replicate hardware, they often suffer from slow execution, complex documentation, and require deep CPU knowledge, limiting their usability for quick insights. This paper presents a deep learning-based approach for simulating a key CPU component, cache memory. Our model “learns” cache characteristics by observing cache miss distributions, without needing detailed manual modeling. This method accelerates simulations and adapts to different program needs, demonstrating accuracy comparable to traditional simulators. Tested on Sysbench and image processing algorithms, it shows promise for faster, scalable, and hardware-independent simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-2779
1433-2787
1433-2787
DOI:10.1007/s10009-025-00800-6