Partitional clustering algorithms for symbolic interval data based on single adaptive distances

This paper introduces dynamic clustering methods for partitioning symbolic interval data. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between clusters and their representatives. To compare symbolic interval data, th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 42; číslo 7; s. 1223 - 1236
Hlavní autori: De Carvalho, Francisco de A.T., Lechevallier, Yves
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2009
Elsevier
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces dynamic clustering methods for partitioning symbolic interval data. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between clusters and their representatives. To compare symbolic interval data, these methods use single adaptive (city-block and Hausdorff) distances that change at each iteration, but are the same for all clusters. Moreover, various tools for the partition and cluster interpretation of symbolic interval data furnished by these algorithms are also presented. Experiments with real and synthetic symbolic interval data sets demonstrate the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2008.11.016