Tailor: Targeting heavy tails in flow cytometry data with fast, interpretable mixture modeling

Automated clustering workflows are increasingly used for the analysis of high parameter flow cytometry data. This trend calls for algorithms which are able to quickly process tens of millions of data points, to compare results across subjects or time points, and to provide easily actionable interpre...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cytometry. Part A Ročník 99; číslo 2; s. 133 - 144
Hlavní autori: Ionita, Matei, Schretzenmair, Richard, Jones, Derek, Moore, Jonni, Wang, Li‐San, Rogers, Wade
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.02.2021
Wiley Subscription Services, Inc
Predmet:
ISSN:1552-4922, 1552-4930, 1552-4930
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Automated clustering workflows are increasingly used for the analysis of high parameter flow cytometry data. This trend calls for algorithms which are able to quickly process tens of millions of data points, to compare results across subjects or time points, and to provide easily actionable interpretations of the results. To this end, we created Tailor, a model‐based clustering algorithm specialized for flow cytometry data. Our approach leverages a phenotype‐aware binning scheme to provide a coarse model of the data, which is then refined using a multivariate Gaussian mixture model. We benchmark Tailor using a simulation study and two flow cytometry data sets, and show that the results are robust to moderate departures from normality and inter‐sample variation. Moreover, Tailor provides automated, non‐overlapping annotations of its clusters, which facilitates interpretation of results and downstream analysis. Tailor is released as an R package, and the source code is publicly available at www.github.com/matei-ionita/Tailor.
Bibliografia:Funding information
This article is based on a conference presentation at CYTO Virtual 2020.
University of Pennsylvania Comprehensive Cancer Center, Grant/Award Number: NCI P30 CA016520; NIH/NIA, Grant/Award Numbers: U24‐AG041689, U54‐AG052427
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1552-4922
1552-4930
1552-4930
DOI:10.1002/cyto.a.24307