A computational method using genetic algorithms for obtaining Stackelberg solutions to two-level linear programming problems

Stackelberg solutions have been derived for two‐level linear programming problems using genetic algorithms which in recent years have shown their efficacy in optimization problems having discrete variables. Two‐level linear programming problems are converted into single‐level programming problems by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics & communications in Japan. Part 3, Fundamental electronic science Ročník 85; číslo 6; s. 55 - 62
Hlavní autoři: Nishizaki, Ichiro, Sakawa, Masatoshi, Niwa, Keiichi, Kitaguchi, Yasuhiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.06.2002
Témata:
ISSN:1042-0967, 1520-6440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Stackelberg solutions have been derived for two‐level linear programming problems using genetic algorithms which in recent years have shown their efficacy in optimization problems having discrete variables. Two‐level linear programming problems are converted into single‐level programming problems by including the optimal conditions of lower‐level problems in the conditions of higher‐level problems. The obtained one‐level programming problems become 0–1 mixed programming problems. A computational method for obtaining Stackelberg solutions by generating initial population and using corresponding genetic operators based on the characteristics of the problems by expressing the 0–1 variables as individuals of the genetic algorithms is proposed. The efficacy of the proposed method is shown in computational experiments by comparing it with the variable elimination method. © 2002 Scripta Technica, Electron Comm Jpn Pt 3, 85(6): 55–62, 2002
Bibliografie:ArticleID:ECJC1101
istex:236CD6D47727C8EC52FD1BCAF934AB69873532BF
ark:/67375/WNG-QDJ78CMW-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1042-0967
1520-6440
DOI:10.1002/ecjc.1101