pyPESTO: a modular and scalable tool for parameter estimation for dynamic models

Abstract Summary Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. pyPESTO is a modular framework for systematic parameter estimation, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 39; číslo 11
Hlavní autoři: Schälte, Yannik, Fröhlich, Fabian, Jost, Paul J, Vanhoefer, Jakob, Pathirana, Dilan, Stapor, Paul, Lakrisenko, Polina, Wang, Dantong, Raimúndez, Elba, Merkt, Simon, Schmiester, Leonard, Städter, Philipp, Grein, Stephan, Dudkin, Erika, Doresic, Domagoj, Weindl, Daniel, Hasenauer, Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 01.11.2023
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract Summary Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. pyPESTO is a modular framework for systematic parameter estimation, with scalable algorithms for optimization and uncertainty quantification. While tailored to ordinary differential equation problems, pyPESTO is broadly applicable to black-box parameter estimation problems. Besides own implementations, it provides a unified interface to various popular simulation and inference methods. Availability and implementation pyPESTO is implemented in Python, open-source under a 3-Clause BSD license. Code and documentation are available on GitHub (https://github.com/icb-dcm/pypesto).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1367-4811
DOI:10.1093/bioinformatics/btad711