Machine learning-assisted ratiometric fluorescence sensor array for recognition of multiple quinolones antibiotics
Developing analytical methods for simultaneous detection of multiple antibiotic residues is crucial for environmental protection and human health. In this study, a dual lanthanide fluorescence probe (GDP-Eu-Tb) based on nucleotides has been designed. The addition of quinolone antibiotics (QNs) quenc...
Uložené v:
| Vydané v: | Food chemistry Ročník 478; s. 143722 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
30.06.2025
|
| Predmet: | |
| ISSN: | 0308-8146, 1873-7072, 1873-7072 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Developing analytical methods for simultaneous detection of multiple antibiotic residues is crucial for environmental protection and human health. In this study, a dual lanthanide fluorescence probe (GDP-Eu-Tb) based on nucleotides has been designed. The addition of quinolone antibiotics (QNs) quench the Eu3+ fluorescence signal through the inner filter effect (IFE) and exhibit characteristic peaks, enabling ratio fluorescence detection of levofloxacin (LVLX), gatifloxacin (GTLX), and moxifloxacin (MXLX). A ratiometric fluorescence sensor array is constructed using a single sensor element (GDP-Eu-Tb), combined with principal component analysis (PCA) and decision tree (DT) algorithms to model the relationship between fluorescence intensity ratios (I450/I616, I460/I616, I463/I616, I468/I616) and QNs. The performance of the DT model is evaluated using accuracy, precision, recall, and F1 score, with stability and generalizability confirmed by stratified ten-fold cross-validation. This approach demonstrates high sensitivity, selectivity and applicability and provides an effective solution for antibiotic residue detection.
[Display omitted]
•A Ratiometric GDP-Eu-Tb fluorescent sensor array was fabricated.•Significant color changes for levofloxacin, gatifloxacin, and moxifloxacin sensing.•The combination of machine learning and the ratiometric fluorescent sensor array.•Accurate prediction and differentiation of mixed antibiotic samples. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0308-8146 1873-7072 1873-7072 |
| DOI: | 10.1016/j.foodchem.2025.143722 |