Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models

Insurance claim severity data are characterized by complex distributional phenomenons, where flexible density estimation tools such as the finite mixture models (FMM) are necessary. However, maximum likelihood estimations (MLE) often produce unstable tail estimates for the FMM. Motivated by this cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Insurance, mathematics & economics Ročník 107; s. 180 - 198
Hlavný autor: Fung, Tsz Chai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2022
Predmet:
ISSN:0167-6687, 1873-5959
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Insurance claim severity data are characterized by complex distributional phenomenons, where flexible density estimation tools such as the finite mixture models (FMM) are necessary. However, maximum likelihood estimations (MLE) often produce unstable tail estimates for the FMM. Motivated by this challenge, this article presents a maximum weighted likelihood estimator (MWLE) for robust estimations of heavy-tailed FMM. Under some regularity conditions, the proposed MWLE is consistent and asymptotically normal. Since the MWLE has a probabilistic interpretation, we are able to develop two distinctive versions of the Generalized Expectation-Maximization (GEM) algorithm to estimate the MWLE parameters more efficiently and reliably than the standard gradient-based algorithms. We apply the proposed MWLE to two simulation studies and a real motor insurance dataset to demonstrate that it better extrapolates the extreme losses than the MLE, without sacrificing the flexibility of the FMM in capturing the small attritional claims.
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2022.08.008