Numerical simulation of viscoelastic fluid–structure interaction benchmarks and their application to the human eye
We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the shifted Crank–Nicolson scheme and in space using the finite elemen...
Uloženo v:
| Vydáno v: | SN applied sciences Ročník 4; číslo 11; s. 1 - 16 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.11.2022
Springer |
| Témata: | |
| ISSN: | 2523-3963, 2523-3971 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the shifted Crank–Nicolson scheme and in space using the finite element method. For the linearisation we employ Newton’s method with exact Jacobians. The viscoelastic fluid is modelled either using the Oldroyd-B or a Burgers-type model. The elastic structures are non-linear hyperelastic materials. We validate the implementation on benchmark problems and numerically analyse the convergence for global mesh refinement and adaptive mesh refinement using the dual-weighted residual method. Furthermore we numerically analyse the influence of the viscoelasticity of the fluid on typical goal functionals like the drag, the lift and the displacement. The derived numerical solution method is applied to ophthalmology where we analyse the interaction of the viscoelastic vitreous with its surrounding elastic structures.
Article highlights
We obtain reliable results for the temporal and spatial discretization for a challenging viscoelastic FSI benchmark.
We show good performance for the dual-weighted residual method for pure viscoelastic problems and for viscoelastic FSI.
The viscoelasticity has a significant impact on the functionals of interest for the benchmarks and for the human eye. |
|---|---|
| ISSN: | 2523-3963 2523-3971 |
| DOI: | 10.1007/s42452-022-05185-8 |