Numerical simulation of viscoelastic fluid–structure interaction benchmarks and their application to the human eye

We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the shifted Crank–Nicolson scheme and in space using the finite elemen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SN applied sciences Ročník 4; číslo 11; s. 1 - 16
Hlavní autoři: Drobny, Alexander, Friedmann, Elfriede
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2022
Springer
Témata:
ISSN:2523-3963, 2523-3971
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the shifted Crank–Nicolson scheme and in space using the finite element method. For the linearisation we employ Newton’s method with exact Jacobians. The viscoelastic fluid is modelled either using the Oldroyd-B or a Burgers-type model. The elastic structures are non-linear hyperelastic materials. We validate the implementation on benchmark problems and numerically analyse the convergence for global mesh refinement and adaptive mesh refinement using the dual-weighted residual method. Furthermore we numerically analyse the influence of the viscoelasticity of the fluid on typical goal functionals like the drag, the lift and the displacement. The derived numerical solution method is applied to ophthalmology where we analyse the interaction of the viscoelastic vitreous with its surrounding elastic structures. Article highlights We obtain reliable results for the temporal and spatial discretization for a challenging viscoelastic FSI benchmark. We show good performance for the dual-weighted residual method for pure viscoelastic problems and for viscoelastic FSI. The viscoelasticity has a significant impact on the functionals of interest for the benchmarks and for the human eye.
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-022-05185-8