Torus Knot Polynomials and Susy Wilson Loops

We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Letters in mathematical physics Ročník 104; číslo 12; s. 1535 - 1556
Hlavní autoři: Giasemidis, Georgios, Tierz, Miguel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2014
Témata:
ISSN:0377-9017, 1573-0530
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ ( n , m ) symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang–Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang–Mills theory, which is known to give averages of Wilson loops in N = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones–Rosso representation in terms of q -harmonic oscillators.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-014-0724-z