Torus Knot Polynomials and Susy Wilson Loops
We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987 ), a basic hypergeometric representation of the HOMFLY polynomial of ( n , m ) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the ( m , n ) ↔ (...
Uloženo v:
| Vydáno v: | Letters in mathematical physics Ročník 104; číslo 12; s. 1535 - 1556 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.12.2014
|
| Témata: | |
| ISSN: | 0377-9017, 1573-0530 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give, using an explicit expression obtained in (Jones V, Ann Math 126:335,
1987
), a basic hypergeometric representation of the HOMFLY polynomial of (
n
,
m
) torus knots, and present a number of equivalent expressions, all related by Heine’s transformations. Using this result, the
(
m
,
n
)
↔
(
n
,
m
)
symmetry and the leading polynomial at large
N
are explicit. We show the latter to be the Wilson loop of 2d Yang–Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang–Mills theory, which is known to give averages of Wilson loops in
N
= 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones–Rosso representation in terms of
q
-harmonic oscillators. |
|---|---|
| ISSN: | 0377-9017 1573-0530 |
| DOI: | 10.1007/s11005-014-0724-z |