Error assessment and mesh adaptivity for regularized continuous failure models

This paper deals with the adaptive finite element analysis of structural failure. A gradient-enhanced damage model has been chosen to simulate material degradation. Since this model is regularized in the post-peak regime, the finite element solution does not suffer from pathological mesh dependence...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 199; no. 17; pp. 961 - 978
Main Authors: Pannachet, T., Díez, P., Askes, H., Sluys, L.J.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 01.03.2010
Elsevier
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the adaptive finite element analysis of structural failure. A gradient-enhanced damage model has been chosen to simulate material degradation. Since this model is regularized in the post-peak regime, the finite element solution does not suffer from pathological mesh dependence and thus converges to an objective solution upon mesh refinement. However, the error analyses have shown that the error in the nonlocal equivalent strain field becomes dominant during the post-peak loading stages. The accuracy of the nonlocal equivalent strain field (and the corresponding damage quantity) also greatly influences the accuracy of the quantity of interest. Two error measures have been proposed. The goal-oriented error estimates have provided similar error distributions, although some small differences have been found in the softening regime. Objective error estimates, together with adaptive criteria, have been used to perform automated h-adaptivity during computation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2009.11.010