Iterative algorithm for approximating fixed points of multivalued quasinonexpansive mappings in Banach spaces
Let E be a strictly convex real Banach space and let D ⊆ E be a nonempty closed convex subset of E . Let T i : D ⟶ P ( D ) , i = 1 , 2 , 3 , … be a countable family of quasinonexpansive multivalued maps that are continuous with respect to the Hausdorff metric, P ( D ) is the family of proximinal and...
Uložené v:
| Vydané v: | Fixed point theory and algorithms for sciences and engineering Ročník 2022; číslo 1; s. 1 - 12 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
07.03.2022
SpringerOpen |
| Predmet: | |
| ISSN: | 2730-5422, 2730-5422 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let
E
be a strictly convex real Banach space and let
D
⊆
E
be a nonempty closed convex subset of
E
. Let
T
i
:
D
⟶
P
(
D
)
,
i
=
1
,
2
,
3
,
…
be a countable family of quasinonexpansive multivalued maps that are continuous with respect to the Hausdorff metric,
P
(
D
)
is the family of proximinal and bounded subsets of
D
. Supposing that the family has at least one common fixed point, we show that a Krasnoselskii–Mann-type sequence converges strongly to a common fixed point. Our result generalizes and complements some important results for single-valued and multivalued quasinonexpansive maps. |
|---|---|
| ISSN: | 2730-5422 2730-5422 |
| DOI: | 10.1186/s13663-022-00718-7 |