Iterative algorithm for approximating fixed points of multivalued quasinonexpansive mappings in Banach spaces

Let E be a strictly convex real Banach space and let D ⊆ E be a nonempty closed convex subset of E . Let T i : D ⟶ P ( D ) , i = 1 , 2 , 3 , … be a countable family of quasinonexpansive multivalued maps that are continuous with respect to the Hausdorff metric, P ( D ) is the family of proximinal and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fixed point theory and algorithms for sciences and engineering Ročník 2022; číslo 1; s. 1 - 12
Hlavní autori: Minjibir, Ma’aruf Shehu, Izuazu, Chimezie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 07.03.2022
SpringerOpen
Predmet:
ISSN:2730-5422, 2730-5422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let E be a strictly convex real Banach space and let D ⊆ E be a nonempty closed convex subset of E . Let T i : D ⟶ P ( D ) , i = 1 , 2 , 3 , … be a countable family of quasinonexpansive multivalued maps that are continuous with respect to the Hausdorff metric, P ( D ) is the family of proximinal and bounded subsets of D . Supposing that the family has at least one common fixed point, we show that a Krasnoselskii–Mann-type sequence converges strongly to a common fixed point. Our result generalizes and complements some important results for single-valued and multivalued quasinonexpansive maps.
ISSN:2730-5422
2730-5422
DOI:10.1186/s13663-022-00718-7