FixMiner: Mining relevant fix patterns for automated program repair

Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the...

Full description

Saved in:
Bibliographic Details
Published in:Empirical software engineering : an international journal Vol. 25; no. 3; pp. 1980 - 2024
Main Authors: Koyuncu, Anil, Liu, Kui, Bissyandé, Tegawendé F., Kim, Dongsun, Klein, Jacques, Monperrus, Martin, Le Traon, Yves
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2020
Springer Nature B.V
Subjects:
ISSN:1382-3256, 1573-7616, 1573-7616
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR FixMiner , with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR FixMiner ’s generated plausible patches are correct.
AbstractList Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR(FixMiner), with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR(FixMiner)'s generated plausible patches are correct.
Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner’s generated plausible patches are correct.
Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR FixMiner , with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR FixMiner ’s generated plausible patches are correct.
Author Kim, Dongsun
Klein, Jacques
Le Traon, Yves
Monperrus, Martin
Liu, Kui
Koyuncu, Anil
Bissyandé, Tegawendé F.
Author_xml – sequence: 1
  givenname: Anil
  surname: Koyuncu
  fullname: Koyuncu, Anil
  email: anil.koyuncu@uni.lu
  organization: SnT, University of Luxembourg
– sequence: 2
  givenname: Kui
  surname: Liu
  fullname: Liu, Kui
  organization: SnT, University of Luxembourg
– sequence: 3
  givenname: Tegawendé F.
  orcidid: 0000-0001-7270-9869
  surname: Bissyandé
  fullname: Bissyandé, Tegawendé F.
  organization: SnT, University of Luxembourg
– sequence: 4
  givenname: Dongsun
  surname: Kim
  fullname: Kim, Dongsun
  organization: Furiosa.ai
– sequence: 5
  givenname: Jacques
  surname: Klein
  fullname: Klein, Jacques
  organization: SnT, University of Luxembourg
– sequence: 6
  givenname: Martin
  surname: Monperrus
  fullname: Monperrus, Martin
  organization: KTH Royal Institute of Technology
– sequence: 7
  givenname: Yves
  surname: Le Traon
  fullname: Le Traon, Yves
  organization: SnT, University of Luxembourg
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273899$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp9kE9PGzEQxa0qSOVPv0BPK3F2O2Ov115uUWhapFS90F4tb9YbDIm92E4b8ulxCQKJA6eZw--9efNOyMQHbwn5jPAFAeTXhNA0NQVsKbRSAd1_IMcoJKeywWZSdq4Y5Uw0H8lJSrcABavFMZnN3e6n8zZeVGU4v6qiXdu_xudqcLtqNDnb6FM1hFiZbQ4bk21fjTGsotkUdjQunpGjwayT_fQ8T8nv-bfr2Q-6-PX9ajZd0GUNmKliCpXgYARrl7zjHJnlXLRWtqxG1TNhleEDlwK6VvK-EbaXXY_IUYgOBn5K6ME3_bPjttNjdBsTH3QwTl-6P1Md4krf5RvNJFdtW_jzA1_i3m9tyvo2bKMvETWrAVAgCigUO1DLGFKKdnjxRdD_y9WHcnUpVz-Vq_dFpN6Ili6b7ILP0bj1-1L-_EW541c2vqZ6R_UI9SaP7A
CitedBy_id crossref_primary_10_1016_j_infsof_2022_107027
crossref_primary_10_1145_3576039
crossref_primary_10_1109_TSE_2021_3125203
crossref_primary_10_1109_TSE_2023_3315935
crossref_primary_10_1145_3702972
crossref_primary_10_1016_j_jss_2024_112083
crossref_primary_10_1145_3631974
crossref_primary_10_1007_s10664_022_10216_4
crossref_primary_10_1109_TSE_2021_3067156
crossref_primary_10_1145_3696002
crossref_primary_10_1145_3733599
crossref_primary_10_1109_TSE_2023_3269500
crossref_primary_10_1109_TSE_2022_3164662
crossref_primary_10_1145_3597617
crossref_primary_10_3390_electronics12010179
crossref_primary_10_1109_TSE_2024_3354969
crossref_primary_10_1109_TCE_2024_3524511
crossref_primary_10_1145_3715004
crossref_primary_10_1007_s10664_023_10415_7
crossref_primary_10_1109_TSE_2023_3275380
crossref_primary_10_1145_3688834
crossref_primary_10_1109_ACCESS_2025_3541336
crossref_primary_10_1145_3579637
crossref_primary_10_1109_ACCESS_2022_3145983
crossref_primary_10_1007_s10664_023_10438_0
crossref_primary_10_1016_j_future_2024_107671
crossref_primary_10_1007_s10270_020_00823_4
crossref_primary_10_1109_LRA_2024_3441493
crossref_primary_10_1145_3696450
crossref_primary_10_1016_j_jss_2024_112116
crossref_primary_10_3390_sym14081555
crossref_primary_10_1016_j_jss_2020_110817
crossref_primary_10_3390_sym14081751
crossref_primary_10_1007_s10515_025_00512_w
crossref_primary_10_1007_s10664_022_10239_x
crossref_primary_10_1109_TSE_2024_3497798
crossref_primary_10_1109_TSE_2025_3571192
crossref_primary_10_1109_TLT_2024_3403710
crossref_primary_10_1007_s10664_021_10003_7
crossref_primary_10_1007_s10115_025_02383_9
crossref_primary_10_1109_TSE_2024_3481893
crossref_primary_10_1145_3705302
crossref_primary_10_3233_JIFS_234037
crossref_primary_10_1145_3511096
crossref_primary_10_1145_3672450
crossref_primary_10_1016_j_scico_2022_102857
crossref_primary_10_1145_3705306
crossref_primary_10_1145_3715786
crossref_primary_10_1007_s10664_024_10503_2
crossref_primary_10_1007_s10664_021_09989_x
crossref_primary_10_1109_TSE_2022_3156637
crossref_primary_10_1109_TSE_2023_3255177
crossref_primary_10_3390_app15073632
crossref_primary_10_1016_j_eswa_2024_124877
crossref_primary_10_1051_wujns_2023286493
crossref_primary_10_1109_TSE_2021_3124323
crossref_primary_10_1007_s10515_023_00392_y
crossref_primary_10_1145_3718739
crossref_primary_10_1007_s11432_022_3803_9
crossref_primary_10_1016_j_jss_2025_112590
crossref_primary_10_1145_3561382
crossref_primary_10_1007_s00236_023_00438_4
crossref_primary_10_1007_s10664_023_10344_5
crossref_primary_10_1016_j_engappai_2024_109291
Cites_doi 10.1109/ICSE.2007.20
10.1145/3238147.3238219
10.1109/ICSE.2015.65
10.1109/SANER.2018.8330203
10.1145/2610384.2628055
10.1109/TSE.2016.2560811
10.1109/ICSME.2016.25
10.1109/ICSE.2013.6606625
10.1109/APSEC.2018.00085
10.1109/ASE.2006.41
10.1145/1052883.1052895
10.1109/ICSE.2015.63
10.1109/ICPC.2009.5090050
10.1145/3105906
10.1145/1352592.1352618
10.1145/2786805.2786811
10.1145/1993316.1993537
10.1080/01621459.1989.10478785
10.1109/ICSE.2009.5070536
10.1109/ICSME.2017.16
10.1145/3293882.3330577
10.1109/ASE.2009.15
10.1145/3180155.3180245
10.1109/ASE.2015.60
10.1109/ASE.2017.8115676
10.1109/ISSRE.2013.6698913
10.1145/2837614.2837617
10.1007/s10664-016-9470-4
10.1145/3092703.3092713
10.1145/233269.233366
10.1145/2642937.2642982
10.1145/1806799.1806847
10.1109/MSR.2013.6624018
10.1016/j.tcs.2004.12.030
10.1109/WCRE.2008.44
10.1145/1082983.1083143
10.1109/CSMR-WCRE.2014.6747191
10.1109/ICST.2019.00020
10.1109/SANER.2015.7081847
10.1109/SANER.2017.7884635
10.1109/ICSME.2016.66
10.1007/BF01840446
10.1145/1081706.1081754
10.1109/TSE.2011.104
10.1145/3180155.3180233
10.1145/2950290.2950308
10.1109/ASE.2017.8115675
10.1145/2351676.2351753
10.1109/ICSE.2017.45
10.14778/2095686.2095692
10.1109/SANER.2016.76
10.1109/ICSM.2013.54
10.1145/3213846.3213871
10.1145/2970276.2970359
10.1109/ICSE.2009.5070531
10.1109/TAIC.PART.2007.13
10.1109/ASE.2008.74
10.1007/978-3-319-99241-9_3
10.1145/3106237.3106253
10.1109/SANER.2019.8667970
10.1109/SANER.2018.8330202
10.1007/s10664-008-9077-5
10.1109/ASE.2017.8115674
10.1109/MSR.2017.12
10.1145/3213846.3213856
10.1007/s10515-010-0062-z
10.1007/s10515-012-0107-6
10.1145/1480881.1480897
10.1109/ICSE.2012.6227176
10.1109/ICSE.2013.6606623
10.1145/2351676.2351752
10.1145/2901739.2901749
10.1109/ICSE.2013.6606596
10.1007/s10664-013-9282-8
10.1109/TSE.2004.52
10.1109/MSR.2015.24
10.1609/aaai.v31i1.10742
10.1109/TSE.2007.70731
10.1145/1181775.1181781
10.1145/2931037.2948705
10.1145/3338906.3338935
10.1109/ICSME.2018.00037
10.1109/ICSE.2013.6606626
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
S0W
ADTPV
AOWAS
D8V
DOI 10.1007/s10664-019-09780-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DELNET Engineering & Technology Collection
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
EndPage 2024
ExternalDocumentID oai_DiVA_org_kth_273899
10_1007_s10664_019_09780_z
GrantInformation_xml – fundername: Fonds National de la Recherche Luxembourg
  grantid: RECOMMEND C15/IS/10449467; FIXPATTERN C15/IS/9964569
  funderid: https://doi.org/10.13039/501100001866
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c401t-82818530a529c3b3312e3359e792418d25e8a3f3750b973d65ed7bd113155b0f3
IEDL.DBID RSV
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531720100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
1573-7616
IngestDate Tue Nov 04 16:40:47 EST 2025
Tue Dec 02 15:59:10 EST 2025
Tue Nov 18 21:13:40 EST 2025
Sat Nov 29 05:37:44 EST 2025
Fri Feb 21 02:35:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fix patterns
Program repair
Empirical software engineering
Debugging
Patches
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-82818530a529c3b3312e3359e792418d25e8a3f3750b973d65ed7bd113155b0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7270-9869
OpenAccessLink http://orbilu.uni.lu/handle/10993/44172
PQID 2400151150
PQPubID 326341
PageCount 45
ParticipantIDs swepub_primary_oai_DiVA_org_kth_273899
proquest_journals_2400151150
crossref_primary_10_1007_s10664_019_09780_z
crossref_citationtrail_10_1007_s10664_019_09780_z
springer_journals_10_1007_s10664_019_09780_z
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gupta R, Pal S, Kanade A, Shevade S (2017) Deepfix: Fixing common c language errors by deep learning. In: AAAI, pp 1345–1351
Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y (2018a) Mining fix patterns for findbugs violations. IEEE Transactions on Software Engineering
Kim M, Notkin D, Grossman D (2007) Automatic inference of structural changes for matching across program versions. In: ICSE, vol 7, pp 333–343. Citeseer
Liu K, Koyuncu A, Kim K, Kim D, Bissyandé TF (2018) LSRepair: Live search of fix ingredients for automated program repair. In: Proceedings of the 25th Asia-Pacific software engineering conference, pp 658–662
Livshits B, Zimmermann T (2005) DynaMine: Finding common error patterns by mining software revision histories. In: Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on foundations of software engineering, ESEC/FSE-13. ACM, New York, pp 296–305. https://doi.org/10.1145/1081706.1081754
Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017) S3: syntax-and semantic-guided repair synthesis via programming by examples. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 593–604
Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y (2019) Ifixr: bug report driven program repair. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 314–325. ACM
Kreutzer P, Dotzler G, Ring M, Eskofier BM, Philippsen M (2016) Automatic clustering of code changes. In: Proceedings of the 13th international conference on mining software repositories, MSR ’16. ACM, New York, pp 61–72. https://doi.org/10.1145/2901739.2901749. http://doi.acm.org.proxy.bnl.lu/10.1145/2901739.2901749
Martinez M, Monperrus M (2018) Ultra-large repair search space with automatically mined templates: The cardumen mode of astor. In: Proceedings of the 10th SSBSE, pp 65–86. Springer
Martinez M, Monperrus M (2016) Astor: A program repair library for java. In: Proceedings of the 25th international symposium on software testing and analysis. ACM, Saarbru̇cken, pp 441–444
Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, L’Aquila, pp 463– 466
Huang K, Chen B, Peng X, Zhou D, Wang Y, Liu Y, Zhao W (2018) Cldiff: generating concise linked code differences. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pp 679–690. ACM
Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: Proceedings of the 30th IEEE/ACM international conference on automated software engineering (ASE). IEEE, Lincoln, pp 295–306
Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 international conference on software engineering, pp 802–811. IEEE Press
Padioleau Y, Lawall J, Hansen RR, Muller G (2008) Documenting and Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd ACM SIGOPS/EuroSys european conference on computer systems 2008, Eurosys ’08. https://doi.org/10.1145/1352592.1352618. ACM, New York, pp 247–260
Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA (2018) Dissection of a bug dataset: Anatomy of 395 patches from Defects4J. In: Proceedings of SANER
Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 262–273. IEEE
Lin W, Chen Z, Ma W, Chen L, Xu L, Xu B (2016) An empirical study on the characteristics of python fine-grained source code change types. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), pp 188–199. IEEE
Hanam Q, Brito FSDM, Mesbah A (2016) Discovering bug patterns in javascript. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 144–156. ACM
Falleri JR GumTree. https://github.com/GumTreeDiff/gumtree (Last Access: Mar. 2018.)
Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, St. Petersburg, pp 298–312
Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic patch generation for null pointer exceptions using metaprogramming. In: Proceedings of the 24th international conference on software analysis, evolution and reengineering, pp 349–358. IEEE
Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch generation for better automated program repair. In: Proceedings of the 40th international conference on software engineering, pp 1–11. ACM
Le XBD, Le Q L, Lo D, Le Goues C (2016b) Enhancing automated program repair with deductive verification. In: Proceedings of the international conference on software maintenance and evolution (ICSME). IEEE, Raleigh, pp 428–432
Le XD, Lo D, Le Goues C (2016a) History driven program repair. In: Proceedings of the 23rd international conference on software analysis, evolution, and reengineering, vol 1, pp 213–224. IEEE
Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In: Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pp 550–554. IEEE Computer Society
MengNKimMMcKinleyKSSystematic editing: Generating program transformations from an exampleACM SIGPLAN Not201146632934210.1145/1993316.1993537
PawlikMAugstenNRted: A robust algorithm for the tree edit distanceProceedings of the VLDB Endowment20115433434510.14778/2095686.2095692
Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic programming. In: Proceedings of the 31st international conference on software engineering, May 16-24. IEEE, Vancouver, pp 364–374
Al-Ekram R, Adma A, Baysal O (2005) Diffx: An algorithm to detect changes in multi-version xml documents. In: Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative research, pp 1–11. IBM Press
Le GouesCNguyenTForrestSWeimerWGenProg: A generic method for automatic software repairTSE20123815472
Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: Proceedings of the 34th international conference on software engineering, pp 386–396. IEEE Press
Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree differencing for fine-grained source code change extraction. IEEE Transactions on software engineering 33(11)
Liu X, Zhong H (2018) Mining stackoverflow for program repair. In: Proceedings of the 25th international conference on software analysis, evolution and reengineering, pp 118–129. IEEE
Kim M, Notkin D (2009) Discovering and representing systematic code changes. In: Proceedings of the 31st international conference on software engineering, pp 309–319. IEEE Computer Society
Koyuncu A, Bissyandé TF, Kim D, Liu K, Klein J, Monperrus M, Traon Y L (2019) D&c: A divide-and-conquer approach to ir-based bug localization. arXiv:1902.02703
Osman H, Lungu M, Nierstrasz O (2014) Mining frequent bug-fix code changes. In: 2014 software evolution week-IEEE conference on software maintenance, reengineering and reverse engineering (CSMR-WCRE), pp 343–347. IEEE
Chilowicz M, Duris E, Roussel G (2009) Syntax tree fingerprinting for source code similarity detection. In: IEEE 17th international conference on program comprehension, 2009. ICPC’09, pp 243–247. IEEE
Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) Avatar: Fixing semantic bugs with fix patterns of static analysis violations. In: Proceedings of the IEEE 26th international conference on software analysis, evolution and reengineering, pp 456–467. IEEE
Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of ACM/IEEE international conference on automated software engineering. ACM, Vasteras, pp 313–324
Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Le Traon Y (2018b) A closer look at real-world patches. In: 2018 IEEE international conference on software maintenance and evolution, pp 275–286. IEEE
Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: program repair via semantic analysis. In: Proceedings of the 35th ICSE, pp 772–781. IEEE
Chawathe SS, Rajaraman A, Garcia-Molina H, Widom J (1996) Change Detection in Hierarchically Structured Information. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, SIGMOD ’96. ACM, New York, pp 493–504. https://doi.org/10.1145/233269.233366
Xiong Y, Wang J, Yan R, Zhang J, Han S, Huang G, Zhang L (2017) Precise condition synthesis for program repair. In: Proceedings of the 39th international conference on software engineering. IEEE, Buenos Aires, pp 416–426
Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) TBar: revisiting template-based automated program repair. In: Proceedings of the 28th international symposium on software testing and analysis
AndersenJLawallJLGeneric patch inferenceAuto Softw Eng201017211914810.1007/s10515-010-0062-z
MartinezMMonperrusMMining software repair models for reasoning on the search space of automated program fixingEmpir Softw Eng201520117620510.1007/s10664-013-9282-8
Oumarou H, Anquetil N, Etien A, Ducasse S, Taiwe KD (2015) Identifying the exact fixing actions of static rule violation. In: 2015 IEEE 22nd international conference on software analysis, evolution and reengineering (SANER), pp 371–379. IEEE
HovemeyerDPughWFinding bugs is easyACM Sigplan Notices200439129210610.1145/1052883.1052895
Kim S, Pan K, Whitehead Jr E (2006) Memories of bug fixes. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 35–45. ACM
Andersen J, Nguyen AC, Lo D, Lawall JL, Khoo SC (2012) Semantic patch inference. In: 2012 Proceedings of the 27th IEEE/ACM international con
9780_CR49
9780_CR48
9780_CR47
9780_CR46
9780_CR41
9780_CR40
9780_CR43
9780_CR42
K Pan (9780_CR77) 2009; 14
I Neamtiu (9780_CR70) 2005; 30
9780_CR38
9780_CR37
9780_CR39
9780_CR34
9780_CR33
9780_CR36
9780_CR35
9780_CR30
9780_CR32
9780_CR31
9780_CR67
9780_CR66
9780_CR63
9780_CR62
J Andersen (9780_CR3) 2010; 17
9780_CR64
D Hovemeyer (9780_CR26) 2004; 39
C Le Goues (9780_CR44) 2012; 38
9780_CR59
9780_CR56
9780_CR55
M Martinez (9780_CR60) 2017; 22
9780_CR58
9780_CR57
9780_CR52
9780_CR51
SW Thomas (9780_CR86) 2013; 39
9780_CR54
9780_CR53
9780_CR50
EW Myers (9780_CR69) 1986; 1
9780_CR9
9780_CR8
N Meng (9780_CR65) 2011; 46
9780_CR1
9780_CR2
9780_CR5
9780_CR89
9780_CR4
9780_CR88
9780_CR7
9780_CR85
P Bille (9780_CR6) 2005; 337
9780_CR84
9780_CR87
9780_CR81
9780_CR80
9780_CR83
9780_CR82
9780_CR78
9780_CR74
9780_CR73
9780_CR76
9780_CR75
9780_CR72
9780_CR71
9780_CR27
J Xuan (9780_CR95) 2017; 43
9780_CR28
9780_CR23
9780_CR22
9780_CR25
C Le Goues (9780_CR45) 2012; 38
9780_CR24
9780_CR21
9780_CR20
9780_CR19
9780_CR16
9780_CR15
9780_CR18
MA Jaro (9780_CR29) 1989; 84
9780_CR17
9780_CR12
9780_CR11
9780_CR13
9780_CR10
9780_CR97
M Pawlik (9780_CR79) 2011; 5
9780_CR92
M Monperrus (9780_CR68) 2018; 51
9780_CR91
9780_CR94
M Martinez (9780_CR61) 2015; 20
9780_CR93
9780_CR90
AT Ying (9780_CR96) 2004; 30
A Duley (9780_CR14) 2012; 19
References_xml – reference: Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, St. Petersburg, pp 298–312
– reference: Osman H, Lungu M, Nierstrasz O (2014) Mining frequent bug-fix code changes. In: 2014 software evolution week-IEEE conference on software maintenance, reengineering and reverse engineering (CSMR-WCRE), pp 343–347. IEEE
– reference: Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) TBar: revisiting template-based automated program repair. In: Proceedings of the 28th international symposium on software testing and analysis
– reference: Abreu R, Zoeteweij P, Van Gemund A J (2007) On the accuracy of spectrum-based fault localization. In: Testing: Academic and industrial conference practice and research techniques-MUTATION (TAICPART-MUTATION 2007), pp 89–98. IEEE
– reference: PawlikMAugstenNRted: A robust algorithm for the tree edit distanceProceedings of the VLDB Endowment20115433434510.14778/2095686.2095692
– reference: Xiong Y, Wang J, Yan R, Zhang J, Han S, Huang G, Zhang L (2017) Precise condition synthesis for program repair. In: Proceedings of the 39th international conference on software engineering. IEEE, Buenos Aires, pp 416–426
– reference: Jiang J, Xiong Y, Zhang H, Gao Q, Chen X (2018) Shaping program repair space with existing patches and similar code. In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, pp 298–309. ACM
– reference: PanKKimSWhiteheadEJToward an understanding of bug fix patternsEmpir Softw Eng200914328631510.1007/s10664-008-9077-5
– reference: Hashimoto M, Mori A (2008) Diff/ts: A tool for fine-grained structural change analysis. In: 2008 15th working conference on reverse engineering, pp 279–288. IEEE
– reference: Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering. ACM, Bergamo, pp 166–178
– reference: Martinez M, Monperrus M (2016) Astor: A program repair library for java. In: Proceedings of the 25th international symposium on software testing and analysis. ACM, Saarbru̇cken, pp 441–444
– reference: Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA (2018) Dissection of a bug dataset: Anatomy of 395 patches from Defects4J. In: Proceedings of SANER
– reference: Falleri JR GumTree. https://github.com/GumTreeDiff/gumtree (Last Access: Mar. 2018.)
– reference: Nguyen HA, Nguyen AT, Nguyen TN (2013) Filtering noise in mixed-purpose fixing commits to improve defect prediction and localization. In: 2013 IEEE 24th international symposium on software reliability engineering (ISSRE), pp 138–147. IEEE
– reference: Lin W, Chen Z, Ma W, Chen L, Xu L, Xu B (2016) An empirical study on the characteristics of python fine-grained source code change types. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), pp 188–199. IEEE
– reference: Martinez M, Duchien L, Monperrus M (2013) Automatically extracting instances of code change patterns with ast analysis. In: 2013 29th IEEE international conference on software maintenance (ICSM), pp 388–391. IEEE
– reference: Tao Y, Kim S (2015) Partitioning composite code changes to facilitate code review. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 180–190. IEEE
– reference: Lee J, Kim D, Bissyandé TF, Jung W, Le Traon Y (2018) Bench4bl: reproducibility study on the performance of ir-based bug localization. In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, pp 61–72. ACM
– reference: Huang K, Chen B, Peng X, Zhou D, Wang Y, Liu Y, Zhao W (2018) Cldiff: generating concise linked code differences. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pp 679–690. ACM
– reference: Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic patch generation for null pointer exceptions using metaprogramming. In: Proceedings of the 24th international conference on software analysis, evolution and reengineering, pp 349–358. IEEE
– reference: Tan SH, Roychoudhury A (2015) Relifix: Automated repair of software regressions. In: Proceedings of the 37th international conference on software engineering-volume 1, pp 471–482. IEEE Press
– reference: Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y (2018a) Mining fix patterns for findbugs violations. IEEE Transactions on Software Engineering
– reference: Livshits B, Zimmermann T (2005) DynaMine: Finding common error patterns by mining software revision histories. In: Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on foundations of software engineering, ESEC/FSE-13. ACM, New York, pp 296–305. https://doi.org/10.1145/1081706.1081754
– reference: BillePA survey on tree edit distance and related problemsTheor Comput Sci20053371-3217239214122210.1016/j.tcs.2004.12.030
– reference: Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and bug tracking systems. In: Proceeding of the 19th ICSM, pp 23–32. IEEE
– reference: Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In: Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pp 550–554. IEEE Computer Society
– reference: Long F, Amidon P, Rinard M (2017) Automatic inference of code transforms for patch generation. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 727–739
– reference: Le XD, Lo D, Le Goues C (2016a) History driven program repair. In: Proceedings of the 23rd international conference on software analysis, evolution, and reengineering, vol 1, pp 213–224. IEEE
– reference: Winkler WE (1990) String comparator metrics and enhanced decision rules in the fellegi-sunter model of record linkage
– reference: Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 international conference on software engineering, pp 802–811. IEEE Press
– reference: Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y (2019) Ifixr: bug report driven program repair. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 314–325. ACM
– reference: Coker Z, Hafiz M (2013) Program transformations to fix c integers. In: Proceedings of the international conference on software engineering. IEEE, San Francisco, pp 792–801
– reference: Bhatia S, Singh R (2016) Automated correction for syntax errors in programming assignments using recurrent neural networks. arXiv:1603.06129
– reference: Padioleau Y, Lawall J, Hansen RR, Muller G (2008) Documenting and Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd ACM SIGOPS/EuroSys european conference on computer systems 2008, Eurosys ’08. https://doi.org/10.1145/1352592.1352618. ACM, New York, pp 247–260
– reference: Meng N, Kim M, McKinley KS (2013) Lase: locating and applying systematic edits by learning from examples. In: Proceedings of the 2013 international conference on software engineering, pp 502–511. IEEE Press
– reference: MengNKimMMcKinleyKSSystematic editing: Generating program transformations from an exampleACM SIGPLAN Not201146632934210.1145/1993316.1993537
– reference: Yue R, Meng N, Wang Q (2017) A characterization study of repeated bug fixes. In: 2017 IEEE international conference on software maintenance and evolution (ICSME), pp 422–432. IEEE
– reference: Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In: Proceedings of the 27th IEEE/ACM international conference on automated software engineering, pp 378–381. ACM
– reference: Koyuncu A, Bissyandé TF, Kim D, Liu K, Klein J, Monperrus M, Traon Y L (2019) D&c: A divide-and-conquer approach to ir-based bug localization. arXiv:1902.02703
– reference: Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 262–273. IEEE
– reference: MartinezMMonperrusMMining software repair models for reasoning on the search space of automated program fixingEmpir Softw Eng201520117620510.1007/s10664-013-9282-8
– reference: Martinez M, Monperrus M (2018) Ultra-large repair search space with automatically mined templates: The cardumen mode of astor. In: Proceedings of the 10th SSBSE, pp 65–86. Springer
– reference: Liu X, Zhong H (2018) Mining stackoverflow for program repair. In: Proceedings of the 25th international conference on software analysis, evolution and reengineering, pp 118–129. IEEE
– reference: MonperrusMAutomatic software repair: a bibliographyACM Comput Surveys (CSUR)20185111710.1145/3105906
– reference: Fluri B, Gall HC (2006) Classifying change types for qualifying change couplings. In: 14th IEEE international conference on program comprehension, 2006. ICPC 2006, pp 35–45. IEEE
– reference: DuleyASpandikowCKimMVdiff: A program differencing algorithm for verilog hardware description languageAutom Softw Eng201219445949010.1007/s10515-012-0107-6
– reference: Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: Proceedings of the 34th international conference on software engineering, pp 386–396. IEEE Press
– reference: Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017) S3: syntax-and semantic-guided repair synthesis via programming by examples. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 593–604
– reference: Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: program repair via semantic analysis. In: Proceedings of the 35th ICSE, pp 772–781. IEEE
– reference: Skiena SS (1997) The stony brook algorithm repository. http://www.cs.sunysb.edu/algorith/implement/nauty/implement. shtml
– reference: Xin Q, Reiss SP (2017) Leveraging syntax-related code for automated program repair. In: Proceedings of the 32nd IEEE/ACM international conference on automated software engineering, pp 660–670. IEEE
– reference: Weissgerber P, Diehl S (2006) Identifying refactorings from source-code changes. In: 21st IEEE/ACM international conference on automated software engineering, 2006. ASE’06, pp 231–240. IEEE
– reference: Andersen J, Nguyen AC, Lo D, Lawall JL, Khoo SC (2012) Semantic patch inference. In: 2012 Proceedings of the 27th IEEE/ACM international conference on automated software engineering (ASE), pp 382–385. IEEE
– reference: Kim S, Pan K, Whitehead Jr E (2006) Memories of bug fixes. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 35–45. ACM
– reference: Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) Avatar: Fixing semantic bugs with fix patterns of static analysis violations. In: Proceedings of the IEEE 26th international conference on software analysis, evolution and reengineering, pp 456–467. IEEE
– reference: Le XBD, Le Q L, Lo D, Le Goues C (2016b) Enhancing automated program repair with deductive verification. In: Proceedings of the international conference on software maintenance and evolution (ICSME). IEEE, Raleigh, pp 428–432
– reference: XuanJMartinezMDeMarcoFClementMMarcoteSLDurieuxTLe BerreDMonperrusMNopol: Automatic repair of conditional statement bugs in java programsIEEE Trans Softw Eng2017431345510.1109/TSE.2016.2560811
– reference: Kim M, Notkin D (2009) Discovering and representing systematic code changes. In: Proceedings of the 31st international conference on software engineering, pp 309–319. IEEE Computer Society
– reference: Oumarou H, Anquetil N, Etien A, Ducasse S, Taiwe KD (2015) Identifying the exact fixing actions of static rule violation. In: 2015 IEEE 22nd international conference on software analysis, evolution and reengineering (SANER), pp 371–379. IEEE
– reference: MartinezMDurieuxTSommerardRXuanJMonperrusMAutomatic repair of real bugs in java: A large-scale experiment on the defects4j datasetEmpir Softw Eng20172241936196410.1007/s10664-016-9470-4
– reference: Hanam Q, Brito FSDM, Mesbah A (2016) Discovering bug patterns in javascript. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 144–156. ACM
– reference: YingATMurphyGCNgRChu-CarrollMCPredicting source code changes by mining change historyIEEE Trans Softw Eng200430957458610.1109/TSE.2004.52
– reference: Al-Ekram R, Adma A, Baysal O (2005) Diffx: An algorithm to detect changes in multi-version xml documents. In: Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative research, pp 1–11. IBM Press
– reference: MyersEWAno (nd) difference algorithm and its variationsAlgorithmica198611-4251266155430510.1007/BF01840446
– reference: Liu K, Koyuncu A, Kim K, Kim D, Bissyandé TF (2018) LSRepair: Live search of fix ingredients for automated program repair. In: Proceedings of the 25th Asia-Pacific software engineering conference, pp 658–662
– reference: Hua J, Zhang M, Wang K, Khurshid S (2018) Towards practical program repair with on-demand candidate generation. In: Proceedings of the 40th international conference on software engineering, pp 12–23. ACM
– reference: JaroMAAdvances in record-linkage methodology as applied to matching the 1985 census of tampa, floridaJ Am Stat Assoc19898440641442010.1080/01621459.1989.10478785
– reference: Le GouesCNguyenTForrestSWeimerWGenProg: A generic method for automatic software repairTSE20123815472
– reference: Le GouesCNguyenTForrestSWeimerWGenprog: A generic method for automatic software repairIEEE Trans Softw Eng2012381547210.1109/TSE.2011.104
– reference: Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: Looking for simple program repairs. In: Proceedings of the 37th international conference on software engineering-volume 1. IEEE, Florence, pp 448–458
– reference: Park J, Kim M, Ray B, Bae DH (2012) An empirical study of supplementary bug fixes. In: Proceedings of the 9th IEEE working conference on mining software repositories, pp 40–49. IEEE Press
– reference: Chilowicz M, Duris E, Roussel G (2009) Syntax tree fingerprinting for source code similarity detection. In: IEEE 17th international conference on program comprehension, 2009. ICPC’09, pp 243–247. IEEE
– reference: Brunel J, Doligez D, Hansen RR, Lawall JL, Muller G (2009) A foundation for flow-based program matching: Using temporal logic and model checking. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’09. ACM, New York, pp 114–126. https://doi.org/10.1145/1480881.1480897
– reference: Saha RK, Lyu Y, Yoshida H, Prasad MR (2017) Elixir: Effective object-oriented program repair. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), pp 648–659. IEEE
– reference: Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi J, Nguyen TN (2010) Recurring bug fixes in object-oriented programs. In: 2010 ACM/IEEE 32nd international conference on software engineering, vol 1, pp 315–324. IEEE
– reference: Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of ACM/IEEE international conference on automated software engineering. ACM, Vasteras, pp 313–324
– reference: Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Le Traon Y (2018b) A closer look at real-world patches. In: 2018 IEEE international conference on software maintenance and evolution, pp 275–286. IEEE
– reference: Molderez T, Stevens R, De Roover C (2017) Mining change histories for unknown systematic edits. In: Procee dings of the 14th international conference on mining software repositories, pp 248–256. IEEE Press
– reference: NeamtiuIFosterJSHicksMUnderstanding source code evolution using abstract syntax tree matchingACM SIGSOFT Softw Eng Notes20053041510.1145/1082983.1083143
– reference: Koyuncu A, Bissyandé T, Kim D, Klein J, Monperrus M, Le Traon Y (2017) Impact of tool support in patch construction. In: Proceedings of the 26th ACM SIGSOFT international symposium on software testing and analysis. ACM, New York, pp 237–248
– reference: Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: Proceedings of the 30th IEEE/ACM international conference on automated software engineering (ASE). IEEE, Lincoln, pp 295–306
– reference: ThomasSWNagappanMBlosteinDHassanAEThe impact of classifier configuration and classifier combination on bug localizationTSE2013391014271443
– reference: Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic programming. In: Proceedings of the 31st international conference on software engineering, May 16-24. IEEE, Vancouver, pp 364–374
– reference: AndersenJLawallJLGeneric patch inferenceAuto Softw Eng201017211914810.1007/s10515-010-0062-z
– reference: Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree differencing for fine-grained source code change extraction. IEEE Transactions on software engineering 33(11)
– reference: Kim M, Notkin D, Grossman D (2007) Automatic inference of structural changes for matching across program versions. In: ICSE, vol 7, pp 333–343. Citeseer
– reference: Gupta R, Pal S, Kanade A, Shevade S (2017) Deepfix: Fixing common c language errors by deep learning. In: AAAI, pp 1345–1351
– reference: Kreutzer P, Dotzler G, Ring M, Eskofier BM, Philippsen M (2016) Automatic clustering of code changes. In: Proceedings of the 13th international conference on mining software repositories, MSR ’16. ACM, New York, pp 61–72. https://doi.org/10.1145/2901739.2901749. http://doi.acm.org.proxy.bnl.lu/10.1145/2901739.2901749
– reference: Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y (2019b) You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019 12th IEEE conference on software testing, validation and verification (ICST), pp 102–113. IEEE
– reference: Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch generation for better automated program repair. In: Proceedings of the 40th international conference on software engineering, pp 1–11. ACM
– reference: Herzig K, Zeller A (2013) The impact of tangled code changes. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13. IEEE, San Francisco, pp 121–130
– reference: Rolim R, Soares G, Gheyi R, D’Antoni L (2018) Learning quick fixes from code repositories. arXiv:1803.03806
– reference: Chawathe SS, Rajaraman A, Garcia-Molina H, Widom J (1996) Change Detection in Hierarchically Structured Information. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, SIGMOD ’96. ACM, New York, pp 493–504. https://doi.org/10.1145/233269.233366
– reference: Chen L, Pei Y, Furia CA (2017) Contract-based program repair without the contracts. In: Proceedings of the 32nd IEEE/ACM international conference on automated software engineering. IEEE, Urbana, pp 637–647
– reference: HovemeyerDPughWFinding bugs is easyACM Sigplan Notices200439129210610.1145/1052883.1052895
– reference: Just R, Jalali D, Ernst MD (2014) Defects4j: A database of existing faults to enable controlled testing studies for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis. ACM, San Jose, pp 437–440
– reference: Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, L’Aquila, pp 463– 466
– ident: 9780_CR35
  doi: 10.1109/ICSE.2007.20
– ident: 9780_CR28
  doi: 10.1145/3238147.3238219
– ident: 9780_CR84
  doi: 10.1109/ICSE.2015.65
– ident: 9780_CR83
  doi: 10.1109/SANER.2018.8330203
– ident: 9780_CR31
  doi: 10.1145/2610384.2628055
– volume: 43
  start-page: 34
  issue: 1
  year: 2017
  ident: 9780_CR95
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2016.2560811
– ident: 9780_CR47
  doi: 10.1109/ICSME.2016.25
– ident: 9780_CR12
  doi: 10.1109/ICSE.2013.6606625
– volume: 38
  start-page: 54
  issue: 1
  year: 2012
  ident: 9780_CR44
  publication-title: TSE
– ident: 9780_CR53
  doi: 10.1109/APSEC.2018.00085
– ident: 9780_CR89
  doi: 10.1109/ASE.2006.41
– ident: 9780_CR92
– volume: 39
  start-page: 92
  issue: 12
  year: 2004
  ident: 9780_CR26
  publication-title: ACM Sigplan Notices
  doi: 10.1145/1052883.1052895
– ident: 9780_CR64
  doi: 10.1109/ICSE.2015.63
– ident: 9780_CR11
  doi: 10.1109/ICPC.2009.5090050
– volume: 39
  start-page: 1427
  issue: 10
  year: 2013
  ident: 9780_CR86
  publication-title: TSE
– volume: 51
  start-page: 17
  issue: 1
  year: 2018
  ident: 9780_CR68
  publication-title: ACM Comput Surveys (CSUR)
  doi: 10.1145/3105906
– ident: 9780_CR76
  doi: 10.1145/1352592.1352618
– ident: 9780_CR57
  doi: 10.1145/2786805.2786811
– ident: 9780_CR19
– volume: 46
  start-page: 329
  issue: 6
  year: 2011
  ident: 9780_CR65
  publication-title: ACM SIGPLAN Not
  doi: 10.1145/1993316.1993537
– volume: 84
  start-page: 414
  issue: 406
  year: 1989
  ident: 9780_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478785
– ident: 9780_CR88
  doi: 10.1109/ICSE.2009.5070536
– ident: 9780_CR97
  doi: 10.1109/ICSME.2017.16
– ident: 9780_CR52
  doi: 10.1145/3293882.3330577
– ident: 9780_CR13
  doi: 10.1109/ASE.2009.15
– ident: 9780_CR27
  doi: 10.1145/3180155.3180245
– ident: 9780_CR32
  doi: 10.1109/ASE.2015.60
– ident: 9780_CR93
  doi: 10.1109/ASE.2017.8115676
– ident: 9780_CR71
  doi: 10.1109/ISSRE.2013.6698913
– ident: 9780_CR58
  doi: 10.1145/2837614.2837617
– volume: 22
  start-page: 1936
  issue: 4
  year: 2017
  ident: 9780_CR60
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-016-9470-4
– ident: 9780_CR37
  doi: 10.1145/3092703.3092713
– ident: 9780_CR9
  doi: 10.1145/233269.233366
– ident: 9780_CR17
  doi: 10.1145/2642937.2642982
– ident: 9780_CR73
  doi: 10.1145/1806799.1806847
– ident: 9780_CR25
  doi: 10.1109/MSR.2013.6624018
– volume: 337
  start-page: 217
  issue: 1-3
  year: 2005
  ident: 9780_CR6
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2004.12.030
– ident: 9780_CR24
  doi: 10.1109/WCRE.2008.44
– volume: 30
  start-page: 1
  issue: 4
  year: 2005
  ident: 9780_CR70
  publication-title: ACM SIGSOFT Softw Eng Notes
  doi: 10.1145/1082983.1083143
– ident: 9780_CR74
  doi: 10.1109/CSMR-WCRE.2014.6747191
– ident: 9780_CR51
  doi: 10.1109/ICST.2019.00020
– ident: 9780_CR48
– ident: 9780_CR75
  doi: 10.1109/SANER.2015.7081847
– ident: 9780_CR15
  doi: 10.1109/SANER.2017.7884635
– ident: 9780_CR43
  doi: 10.1109/ICSME.2016.66
– volume: 1
  start-page: 251
  issue: 1-4
  year: 1986
  ident: 9780_CR69
  publication-title: Algorithmica
  doi: 10.1007/BF01840446
– ident: 9780_CR55
  doi: 10.1145/1081706.1081754
– volume: 38
  start-page: 54
  issue: 1
  year: 2012
  ident: 9780_CR45
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2011.104
– ident: 9780_CR90
  doi: 10.1145/3180155.3180233
– ident: 9780_CR23
  doi: 10.1145/2950290.2950308
– ident: 9780_CR81
  doi: 10.1109/ASE.2017.8115675
– ident: 9780_CR4
  doi: 10.1145/2351676.2351753
– ident: 9780_CR2
– ident: 9780_CR94
  doi: 10.1109/ICSE.2017.45
– volume: 5
  start-page: 334
  issue: 4
  year: 2011
  ident: 9780_CR79
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2095686.2095692
– ident: 9780_CR82
– ident: 9780_CR42
  doi: 10.1109/SANER.2016.76
– ident: 9780_CR59
  doi: 10.1109/ICSM.2013.54
– ident: 9780_CR18
– ident: 9780_CR30
  doi: 10.1145/3213846.3213871
– ident: 9780_CR91
  doi: 10.1145/2970276.2970359
– ident: 9780_CR34
  doi: 10.1109/ICSE.2009.5070531
– ident: 9780_CR1
  doi: 10.1109/TAIC.PART.2007.13
– ident: 9780_CR20
  doi: 10.1109/ASE.2008.74
– ident: 9780_CR5
– ident: 9780_CR63
  doi: 10.1007/978-3-319-99241-9_3
– ident: 9780_CR56
  doi: 10.1145/3106237.3106253
– ident: 9780_CR50
  doi: 10.1109/SANER.2019.8667970
– ident: 9780_CR54
  doi: 10.1109/SANER.2018.8330202
– volume: 14
  start-page: 286
  issue: 3
  year: 2009
  ident: 9780_CR77
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9077-5
– ident: 9780_CR10
  doi: 10.1109/ASE.2017.8115674
– ident: 9780_CR67
  doi: 10.1109/MSR.2017.12
– ident: 9780_CR80
– ident: 9780_CR46
  doi: 10.1145/3213846.3213856
– volume: 17
  start-page: 119
  issue: 2
  year: 2010
  ident: 9780_CR3
  publication-title: Auto Softw Eng
  doi: 10.1007/s10515-010-0062-z
– volume: 19
  start-page: 459
  issue: 4
  year: 2012
  ident: 9780_CR14
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-012-0107-6
– ident: 9780_CR78
– ident: 9780_CR7
  doi: 10.1145/1480881.1480897
– ident: 9780_CR87
  doi: 10.1109/ICSE.2012.6227176
– ident: 9780_CR72
  doi: 10.1109/ICSE.2013.6606623
– ident: 9780_CR8
  doi: 10.1145/2351676.2351752
– ident: 9780_CR40
  doi: 10.1145/2901739.2901749
– ident: 9780_CR66
  doi: 10.1109/ICSE.2013.6606596
– ident: 9780_CR16
– volume: 20
  start-page: 176
  issue: 1
  year: 2015
  ident: 9780_CR61
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-013-9282-8
– volume: 30
  start-page: 574
  issue: 9
  year: 2004
  ident: 9780_CR96
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2004.52
– ident: 9780_CR85
  doi: 10.1109/MSR.2015.24
– ident: 9780_CR22
  doi: 10.1609/aaai.v31i1.10742
– ident: 9780_CR21
  doi: 10.1109/TSE.2007.70731
– ident: 9780_CR41
– ident: 9780_CR36
  doi: 10.1145/1181775.1181781
– ident: 9780_CR38
– ident: 9780_CR62
  doi: 10.1145/2931037.2948705
– ident: 9780_CR39
  doi: 10.1145/3338906.3338935
– ident: 9780_CR49
  doi: 10.1109/ICSME.2018.00037
– ident: 9780_CR33
  doi: 10.1109/ICSE.2013.6606626
SSID ssj0009745
Score 2.6212013
Snippet Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1980
SubjectTerms Automation
Clustering
Compilers
Computer Science
Context
Debugging
Empirical software engineering
Fix patterns
Interpreters
Patches
Patching
Program repair
Programming Languages
Repair
Scripts
Software development
Software Engineering/Programming and Operating Systems
Source code
Trees
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQPkWhIA-IBSKSOG1iFoSAioUKiQ91s-zYgQjUljZFqL-eO9dpBEMXstqOo5zte7bv3iPkOJOaS4AdXhrBFiUyJvEUD7WnAg2PjLDUik3E3W7S6_EHd-A2dmGV5ZpoF2o9SPGM_BxjHcE7AX65HH56qBqFt6tOQmOZrCBLQmhD9x4r0t3YihQjzZ7HwLe7pBmXOtduY_wFBgzFie9NfzumCm3OL0j_kIlaB9Sp__fTN8i6g570ajZWNsmS6W-ReinrQN0s3ybXnfz7HnMCL-i9lY-gKKwCiLugWf5Nh5aRsz-mAHepnBQDwLxGUxfoBXWHMh_tkOfO7dP1nee0FsBIflBgNjl6bl-2Qp4yxVgQGsZa3MSwQQsSHbZMIlnGAGAoHjPdbhkdKx0EDACJ8jO2S2r9Qd_sEZrBDk8nKjNZBk0jpnwT-oDCZDvVUkW8QYLyR4vUEZGjHsaHqCiU0TgCjCOsccS0QU7nbYYzGo6FtZulIYSbkmNRWaFBzkqbVsWL3nYys_u8Z6TkvslfrsRg9CreizeB-U2c7y_u9oCshbhZt9GSTVIrRhNzSFbTryIfj47syP0B9cHzSA
  priority: 102
  providerName: ProQuest
Title FixMiner: Mining relevant fix patterns for automated program repair
URI https://link.springer.com/article/10.1007/s10664-019-09780-z
https://www.proquest.com/docview/2400151150
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273899
Volume 25
WOSCitedRecordID wos000531720100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1573-7616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGlgoT1EelQfEApGSOGliNl4VS6uqQIVYLDt2IAK1VRsQ6q_n7CYtIFQJMmTxI9adnftOvvsO4CgVigmEHU4SoIsSaB07kvnKkZ7CRwSm1RabiFqt-OGBtYuksFEZ7V5eSdo_9Zdkt3rdREyYEJ8odp3xIiyjuYvNcezcdmdUu5EtTWzI9RyKFr1Ilfl9ju_maIYxp9eiPyhErdlpVP634HVYK2AmOZ_siw1Y0L1NqJQlHEhxorfgspF9NE3-3xlp2lIRxBRRQXSdkzT7IAPLvtkbEYS2RLzlfcS3WpEiqAv7DkQ23Ib7xvXd5Y1T1FVAhbhebjLHjZV2ReizhEpKPV9TGjIdoTPmxcoPdSxoShFMSBZRVQ-1iqTyPIrgQ7op3YGlXr-nd4Gk6M2pWKY6TXFoQKWrfRcRl6gnSsiAVcErxcuTgnTc1L545TO6ZCMljlLiVkp8XIWT6ZjBhHJjbu-DUmu8OH4jbgJjEcog2K3CaamcWfO82Y4n2p5-2dBvX2Xdc94fPvGX_JmbXCbG9v427z6s-sZRt5GSB7CUD9_0Iawk73k2GtZg-eK61e7UTODpLb7b4WPN7ulPv3zuCA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RtFK5QF-I8Ch7aHtprdpeJ_YiIYSgEQgSVSqtuG13vWuwQElIzPNH8RuZ2dixyiE3DvV1X7Zndh67M_MBfMqUEQrNDi-N0EWJrE08LULj6cDgoyJqdWATca-XnJyIn3PwUOXCUFhlJROdoDaDlM7Iv1OsI2ontF-2h5ceoUbR7WoFoTFhi0N7d4Mu23jrYA_p-zkMOz-Od_e9ElUAX8cPCsqbJh3lq1YoUq45D0LLeUvYGF2RIDFhyyaKZxxVqRYxN-2WNbE2QcBR9Wo_4zjvC3gZkfR3oYK_6iK_sQNFprJ-HkdbokzSKVP12m2K96AApTjxvft_FWFt3U4vZJ8UL3UKr7P4v_2qN7BQmtZsZ7IX3sKc7b-DxQq2gpVS7D3sdvLbLuU8brKug8dgBByDHkXBsvyWDV3F0f6YoTnP1FUxQJveGlYGsmHfocpHH-D3s3zKEjT6g75dBpahB2sSndksw6ER174NfbQyVTs1SkeiCUFFWJmWhdYJ7-NC1iWiiRkkMoN0zCDvm_B1OmY4KTMys_daRXhZipyxrKnehG8VD9XNs2b7MuGz6cpUcnwv_7MjB6NTeV6cScrfEmJl9rIb8Hr_uHskjw56h6swH9LBhIsMXYNGMbqy6_AqvS7y8eij2zUM_j437z0CmtpL7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXylMsFPABuEDUJE42MRJCVZcVVelqD4AqLq4d2zQq2l12Uyj9afw6ZrzORnDYWw_k6lcSf_bM2DPzATxzygiFakdUZWiiZNaWkRapiXRi8FEZlXqyiWI0Ko-OxHgDfrexMORW2e6JfqM204rOyHfI1xGlE-ovOy64RYwHw7ez7xExSNFNa0unsYTIgf31E823xZv9Ac718zQdvvu49z4KDAP4anHSUAw1yatY5amouOY8SS3nubAFmiVJadLcloo7jmJVi4Kbfm5NoU2ScBTDOnYc-70CVwu0McnwG-dfuoS_hSdIphR_EUe9IgTshLC9fp98P8hZqSjj6OJvodhpuqvL2X8SmXrhN9z6n3_bLbgZVG62u1wjt2HDTu7AVktnwcLudhf2hvX5IcVCvmaHnjaDEaEMWhoNc_U5m_lMpJMFQzWfqbNmirq-NSw4uGHdmarn9-DTpXzKfdicTCf2ATCHlq0ptbPOYdOM69imMWqfql8ZpTPRg6SdZFmFBOzEA_JNdqmjCRgSgSE9MORFD16u2syW6UfW1t5uQSDDVrSQHQJ68KrFU1e8rrcXS8ytRqZU5IP6866czr_K0-ZEUlyXEA_XD_sUriPk5If90cEjuJHSeYV3GN2GzWZ-Zh_DtepHUy_mT_wCYnB82dD7Axz9VM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FixMiner%3A+Mining+relevant+fix+patterns+for+automated+program+repair&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Koyuncu%2C+Anil&rft.au=Liu%2C+Kui&rft.au=Bissyand%C3%A9%2C+Tegawend%C3%A9+F.&rft.au=Kim%2C+Dongsun&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=25&rft.issue=3&rft.spage=1980&rft.epage=2024&rft_id=info:doi/10.1007%2Fs10664-019-09780-z&rft.externalDocID=10_1007_s10664_019_09780_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon