FixMiner: Mining relevant fix patterns for automated program repair
Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the...
Gespeichert in:
| Veröffentlicht in: | Empirical software engineering : an international journal Jg. 25; H. 3; S. 1980 - 2024 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-3256, 1573-7616, 1573-7616 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR
FixMiner
, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR
FixMiner
’s generated plausible patches are correct. |
|---|---|
| AbstractList | Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR(FixMiner), with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR(FixMiner)'s generated plausible patches are correct. Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner’s generated plausible patches are correct. Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR FixMiner , with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PAR FixMiner ’s generated plausible patches are correct. |
| Author | Kim, Dongsun Klein, Jacques Le Traon, Yves Monperrus, Martin Liu, Kui Koyuncu, Anil Bissyandé, Tegawendé F. |
| Author_xml | – sequence: 1 givenname: Anil surname: Koyuncu fullname: Koyuncu, Anil email: anil.koyuncu@uni.lu organization: SnT, University of Luxembourg – sequence: 2 givenname: Kui surname: Liu fullname: Liu, Kui organization: SnT, University of Luxembourg – sequence: 3 givenname: Tegawendé F. orcidid: 0000-0001-7270-9869 surname: Bissyandé fullname: Bissyandé, Tegawendé F. organization: SnT, University of Luxembourg – sequence: 4 givenname: Dongsun surname: Kim fullname: Kim, Dongsun organization: Furiosa.ai – sequence: 5 givenname: Jacques surname: Klein fullname: Klein, Jacques organization: SnT, University of Luxembourg – sequence: 6 givenname: Martin surname: Monperrus fullname: Monperrus, Martin organization: KTH Royal Institute of Technology – sequence: 7 givenname: Yves surname: Le Traon fullname: Le Traon, Yves organization: SnT, University of Luxembourg |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273899$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) |
| BookMark | eNp9kE9PGzEQxa0qSOVPv0BPK3F2O2Ov115uUWhapFS90F4tb9YbDIm92E4b8ulxCQKJA6eZw--9efNOyMQHbwn5jPAFAeTXhNA0NQVsKbRSAd1_IMcoJKeywWZSdq4Y5Uw0H8lJSrcABavFMZnN3e6n8zZeVGU4v6qiXdu_xudqcLtqNDnb6FM1hFiZbQ4bk21fjTGsotkUdjQunpGjwayT_fQ8T8nv-bfr2Q-6-PX9ajZd0GUNmKliCpXgYARrl7zjHJnlXLRWtqxG1TNhleEDlwK6VvK-EbaXXY_IUYgOBn5K6ME3_bPjttNjdBsTH3QwTl-6P1Md4krf5RvNJFdtW_jzA1_i3m9tyvo2bKMvETWrAVAgCigUO1DLGFKKdnjxRdD_y9WHcnUpVz-Vq_dFpN6Ili6b7ILP0bj1-1L-_EW541c2vqZ6R_UI9SaP7A |
| CitedBy_id | crossref_primary_10_1016_j_infsof_2022_107027 crossref_primary_10_1145_3576039 crossref_primary_10_1109_TSE_2021_3125203 crossref_primary_10_1109_TSE_2023_3315935 crossref_primary_10_1145_3702972 crossref_primary_10_1016_j_jss_2024_112083 crossref_primary_10_1145_3631974 crossref_primary_10_1007_s10664_022_10216_4 crossref_primary_10_1109_TSE_2021_3067156 crossref_primary_10_1145_3696002 crossref_primary_10_1145_3733599 crossref_primary_10_1109_TSE_2023_3269500 crossref_primary_10_1109_TSE_2022_3164662 crossref_primary_10_1145_3597617 crossref_primary_10_3390_electronics12010179 crossref_primary_10_1109_TSE_2024_3354969 crossref_primary_10_1109_TCE_2024_3524511 crossref_primary_10_1145_3715004 crossref_primary_10_1007_s10664_023_10415_7 crossref_primary_10_1109_TSE_2023_3275380 crossref_primary_10_1145_3688834 crossref_primary_10_1109_ACCESS_2025_3541336 crossref_primary_10_1145_3579637 crossref_primary_10_1109_ACCESS_2022_3145983 crossref_primary_10_1007_s10664_023_10438_0 crossref_primary_10_1016_j_future_2024_107671 crossref_primary_10_1007_s10270_020_00823_4 crossref_primary_10_1109_LRA_2024_3441493 crossref_primary_10_1145_3696450 crossref_primary_10_1016_j_jss_2024_112116 crossref_primary_10_3390_sym14081555 crossref_primary_10_1016_j_jss_2020_110817 crossref_primary_10_3390_sym14081751 crossref_primary_10_1007_s10515_025_00512_w crossref_primary_10_1007_s10664_022_10239_x crossref_primary_10_1109_TSE_2024_3497798 crossref_primary_10_1109_TSE_2025_3571192 crossref_primary_10_1109_TLT_2024_3403710 crossref_primary_10_1007_s10664_021_10003_7 crossref_primary_10_1007_s10115_025_02383_9 crossref_primary_10_1109_TSE_2024_3481893 crossref_primary_10_1145_3705302 crossref_primary_10_3233_JIFS_234037 crossref_primary_10_1145_3511096 crossref_primary_10_1145_3672450 crossref_primary_10_1016_j_scico_2022_102857 crossref_primary_10_1145_3705306 crossref_primary_10_1145_3715786 crossref_primary_10_1007_s10664_024_10503_2 crossref_primary_10_1007_s10664_021_09989_x crossref_primary_10_1109_TSE_2022_3156637 crossref_primary_10_1109_TSE_2023_3255177 crossref_primary_10_3390_app15073632 crossref_primary_10_1016_j_eswa_2024_124877 crossref_primary_10_1051_wujns_2023286493 crossref_primary_10_1109_TSE_2021_3124323 crossref_primary_10_1007_s10515_023_00392_y crossref_primary_10_1145_3718739 crossref_primary_10_1007_s11432_022_3803_9 crossref_primary_10_1016_j_jss_2025_112590 crossref_primary_10_1145_3561382 crossref_primary_10_1007_s00236_023_00438_4 crossref_primary_10_1007_s10664_023_10344_5 crossref_primary_10_1016_j_engappai_2024_109291 |
| Cites_doi | 10.1109/ICSE.2007.20 10.1145/3238147.3238219 10.1109/ICSE.2015.65 10.1109/SANER.2018.8330203 10.1145/2610384.2628055 10.1109/TSE.2016.2560811 10.1109/ICSME.2016.25 10.1109/ICSE.2013.6606625 10.1109/APSEC.2018.00085 10.1109/ASE.2006.41 10.1145/1052883.1052895 10.1109/ICSE.2015.63 10.1109/ICPC.2009.5090050 10.1145/3105906 10.1145/1352592.1352618 10.1145/2786805.2786811 10.1145/1993316.1993537 10.1080/01621459.1989.10478785 10.1109/ICSE.2009.5070536 10.1109/ICSME.2017.16 10.1145/3293882.3330577 10.1109/ASE.2009.15 10.1145/3180155.3180245 10.1109/ASE.2015.60 10.1109/ASE.2017.8115676 10.1109/ISSRE.2013.6698913 10.1145/2837614.2837617 10.1007/s10664-016-9470-4 10.1145/3092703.3092713 10.1145/233269.233366 10.1145/2642937.2642982 10.1145/1806799.1806847 10.1109/MSR.2013.6624018 10.1016/j.tcs.2004.12.030 10.1109/WCRE.2008.44 10.1145/1082983.1083143 10.1109/CSMR-WCRE.2014.6747191 10.1109/ICST.2019.00020 10.1109/SANER.2015.7081847 10.1109/SANER.2017.7884635 10.1109/ICSME.2016.66 10.1007/BF01840446 10.1145/1081706.1081754 10.1109/TSE.2011.104 10.1145/3180155.3180233 10.1145/2950290.2950308 10.1109/ASE.2017.8115675 10.1145/2351676.2351753 10.1109/ICSE.2017.45 10.14778/2095686.2095692 10.1109/SANER.2016.76 10.1109/ICSM.2013.54 10.1145/3213846.3213871 10.1145/2970276.2970359 10.1109/ICSE.2009.5070531 10.1109/TAIC.PART.2007.13 10.1109/ASE.2008.74 10.1007/978-3-319-99241-9_3 10.1145/3106237.3106253 10.1109/SANER.2019.8667970 10.1109/SANER.2018.8330202 10.1007/s10664-008-9077-5 10.1109/ASE.2017.8115674 10.1109/MSR.2017.12 10.1145/3213846.3213856 10.1007/s10515-010-0062-z 10.1007/s10515-012-0107-6 10.1145/1480881.1480897 10.1109/ICSE.2012.6227176 10.1109/ICSE.2013.6606623 10.1145/2351676.2351752 10.1145/2901739.2901749 10.1109/ICSE.2013.6606596 10.1007/s10664-013-9282-8 10.1109/TSE.2004.52 10.1109/MSR.2015.24 10.1609/aaai.v31i1.10742 10.1109/TSE.2007.70731 10.1145/1181775.1181781 10.1145/2931037.2948705 10.1145/3338906.3338935 10.1109/ICSME.2018.00037 10.1109/ICSE.2013.6606626 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS S0W ADTPV AOWAS D8V |
| DOI | 10.1007/s10664-019-09780-z |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DELNET Engineering & Technology Collection SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7616 |
| EndPage | 2024 |
| ExternalDocumentID | oai_DiVA_org_kth_273899 10_1007_s10664_019_09780_z |
| GrantInformation_xml | – fundername: Fonds National de la Recherche Luxembourg grantid: RECOMMEND C15/IS/10449467; FIXPATTERN C15/IS/9964569 funderid: https://doi.org/10.13039/501100001866 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI ADTPV AOWAS D8V |
| ID | FETCH-LOGICAL-c401t-82818530a529c3b3312e3359e792418d25e8a3f3750b973d65ed7bd113155b0f3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531720100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-3256 1573-7616 |
| IngestDate | Tue Nov 04 16:40:47 EST 2025 Tue Dec 02 15:59:10 EST 2025 Tue Nov 18 21:13:40 EST 2025 Sat Nov 29 05:37:44 EST 2025 Fri Feb 21 02:35:49 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Fix patterns Program repair Empirical software engineering Debugging Patches |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-82818530a529c3b3312e3359e792418d25e8a3f3750b973d65ed7bd113155b0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7270-9869 |
| OpenAccessLink | http://orbilu.uni.lu/handle/10993/44172 |
| PQID | 2400151150 |
| PQPubID | 326341 |
| PageCount | 45 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_kth_273899 proquest_journals_2400151150 crossref_primary_10_1007_s10664_019_09780_z crossref_citationtrail_10_1007_s10664_019_09780_z springer_journals_10_1007_s10664_019_09780_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Empirical software engineering : an international journal |
| PublicationTitleAbbrev | Empir Software Eng |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gupta R, Pal S, Kanade A, Shevade S (2017) Deepfix: Fixing common c language errors by deep learning. In: AAAI, pp 1345–1351 Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y (2018a) Mining fix patterns for findbugs violations. IEEE Transactions on Software Engineering Kim M, Notkin D, Grossman D (2007) Automatic inference of structural changes for matching across program versions. In: ICSE, vol 7, pp 333–343. Citeseer Liu K, Koyuncu A, Kim K, Kim D, Bissyandé TF (2018) LSRepair: Live search of fix ingredients for automated program repair. In: Proceedings of the 25th Asia-Pacific software engineering conference, pp 658–662 Livshits B, Zimmermann T (2005) DynaMine: Finding common error patterns by mining software revision histories. In: Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on foundations of software engineering, ESEC/FSE-13. ACM, New York, pp 296–305. https://doi.org/10.1145/1081706.1081754 Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017) S3: syntax-and semantic-guided repair synthesis via programming by examples. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 593–604 Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y (2019) Ifixr: bug report driven program repair. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 314–325. ACM Kreutzer P, Dotzler G, Ring M, Eskofier BM, Philippsen M (2016) Automatic clustering of code changes. In: Proceedings of the 13th international conference on mining software repositories, MSR ’16. ACM, New York, pp 61–72. https://doi.org/10.1145/2901739.2901749. http://doi.acm.org.proxy.bnl.lu/10.1145/2901739.2901749 Martinez M, Monperrus M (2018) Ultra-large repair search space with automatically mined templates: The cardumen mode of astor. In: Proceedings of the 10th SSBSE, pp 65–86. Springer Martinez M, Monperrus M (2016) Astor: A program repair library for java. In: Proceedings of the 25th international symposium on software testing and analysis. ACM, Saarbru̇cken, pp 441–444 Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, L’Aquila, pp 463– 466 Huang K, Chen B, Peng X, Zhou D, Wang Y, Liu Y, Zhao W (2018) Cldiff: generating concise linked code differences. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pp 679–690. ACM Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: Proceedings of the 30th IEEE/ACM international conference on automated software engineering (ASE). IEEE, Lincoln, pp 295–306 Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 international conference on software engineering, pp 802–811. IEEE Press Padioleau Y, Lawall J, Hansen RR, Muller G (2008) Documenting and Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd ACM SIGOPS/EuroSys european conference on computer systems 2008, Eurosys ’08. https://doi.org/10.1145/1352592.1352618. ACM, New York, pp 247–260 Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA (2018) Dissection of a bug dataset: Anatomy of 395 patches from Defects4J. In: Proceedings of SANER Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 262–273. IEEE Lin W, Chen Z, Ma W, Chen L, Xu L, Xu B (2016) An empirical study on the characteristics of python fine-grained source code change types. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), pp 188–199. IEEE Hanam Q, Brito FSDM, Mesbah A (2016) Discovering bug patterns in javascript. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 144–156. ACM Falleri JR GumTree. https://github.com/GumTreeDiff/gumtree (Last Access: Mar. 2018.) Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, St. Petersburg, pp 298–312 Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic patch generation for null pointer exceptions using metaprogramming. In: Proceedings of the 24th international conference on software analysis, evolution and reengineering, pp 349–358. IEEE Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch generation for better automated program repair. In: Proceedings of the 40th international conference on software engineering, pp 1–11. ACM Le XBD, Le Q L, Lo D, Le Goues C (2016b) Enhancing automated program repair with deductive verification. In: Proceedings of the international conference on software maintenance and evolution (ICSME). IEEE, Raleigh, pp 428–432 Le XD, Lo D, Le Goues C (2016a) History driven program repair. In: Proceedings of the 23rd international conference on software analysis, evolution, and reengineering, vol 1, pp 213–224. IEEE Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In: Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pp 550–554. IEEE Computer Society MengNKimMMcKinleyKSSystematic editing: Generating program transformations from an exampleACM SIGPLAN Not201146632934210.1145/1993316.1993537 PawlikMAugstenNRted: A robust algorithm for the tree edit distanceProceedings of the VLDB Endowment20115433434510.14778/2095686.2095692 Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic programming. In: Proceedings of the 31st international conference on software engineering, May 16-24. IEEE, Vancouver, pp 364–374 Al-Ekram R, Adma A, Baysal O (2005) Diffx: An algorithm to detect changes in multi-version xml documents. In: Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative research, pp 1–11. IBM Press Le GouesCNguyenTForrestSWeimerWGenProg: A generic method for automatic software repairTSE20123815472 Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: Proceedings of the 34th international conference on software engineering, pp 386–396. IEEE Press Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree differencing for fine-grained source code change extraction. IEEE Transactions on software engineering 33(11) Liu X, Zhong H (2018) Mining stackoverflow for program repair. In: Proceedings of the 25th international conference on software analysis, evolution and reengineering, pp 118–129. IEEE Kim M, Notkin D (2009) Discovering and representing systematic code changes. In: Proceedings of the 31st international conference on software engineering, pp 309–319. IEEE Computer Society Koyuncu A, Bissyandé TF, Kim D, Liu K, Klein J, Monperrus M, Traon Y L (2019) D&c: A divide-and-conquer approach to ir-based bug localization. arXiv:1902.02703 Osman H, Lungu M, Nierstrasz O (2014) Mining frequent bug-fix code changes. In: 2014 software evolution week-IEEE conference on software maintenance, reengineering and reverse engineering (CSMR-WCRE), pp 343–347. IEEE Chilowicz M, Duris E, Roussel G (2009) Syntax tree fingerprinting for source code similarity detection. In: IEEE 17th international conference on program comprehension, 2009. ICPC’09, pp 243–247. IEEE Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) Avatar: Fixing semantic bugs with fix patterns of static analysis violations. In: Proceedings of the IEEE 26th international conference on software analysis, evolution and reengineering, pp 456–467. IEEE Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of ACM/IEEE international conference on automated software engineering. ACM, Vasteras, pp 313–324 Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Le Traon Y (2018b) A closer look at real-world patches. In: 2018 IEEE international conference on software maintenance and evolution, pp 275–286. IEEE Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: program repair via semantic analysis. In: Proceedings of the 35th ICSE, pp 772–781. IEEE Chawathe SS, Rajaraman A, Garcia-Molina H, Widom J (1996) Change Detection in Hierarchically Structured Information. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, SIGMOD ’96. ACM, New York, pp 493–504. https://doi.org/10.1145/233269.233366 Xiong Y, Wang J, Yan R, Zhang J, Han S, Huang G, Zhang L (2017) Precise condition synthesis for program repair. In: Proceedings of the 39th international conference on software engineering. IEEE, Buenos Aires, pp 416–426 Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) TBar: revisiting template-based automated program repair. In: Proceedings of the 28th international symposium on software testing and analysis AndersenJLawallJLGeneric patch inferenceAuto Softw Eng201017211914810.1007/s10515-010-0062-z MartinezMMonperrusMMining software repair models for reasoning on the search space of automated program fixingEmpir Softw Eng201520117620510.1007/s10664-013-9282-8 Oumarou H, Anquetil N, Etien A, Ducasse S, Taiwe KD (2015) Identifying the exact fixing actions of static rule violation. In: 2015 IEEE 22nd international conference on software analysis, evolution and reengineering (SANER), pp 371–379. IEEE HovemeyerDPughWFinding bugs is easyACM Sigplan Notices200439129210610.1145/1052883.1052895 Kim S, Pan K, Whitehead Jr E (2006) Memories of bug fixes. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 35–45. ACM Andersen J, Nguyen AC, Lo D, Lawall JL, Khoo SC (2012) Semantic patch inference. In: 2012 Proceedings of the 27th IEEE/ACM international con 9780_CR49 9780_CR48 9780_CR47 9780_CR46 9780_CR41 9780_CR40 9780_CR43 9780_CR42 K Pan (9780_CR77) 2009; 14 I Neamtiu (9780_CR70) 2005; 30 9780_CR38 9780_CR37 9780_CR39 9780_CR34 9780_CR33 9780_CR36 9780_CR35 9780_CR30 9780_CR32 9780_CR31 9780_CR67 9780_CR66 9780_CR63 9780_CR62 J Andersen (9780_CR3) 2010; 17 9780_CR64 D Hovemeyer (9780_CR26) 2004; 39 C Le Goues (9780_CR44) 2012; 38 9780_CR59 9780_CR56 9780_CR55 M Martinez (9780_CR60) 2017; 22 9780_CR58 9780_CR57 9780_CR52 9780_CR51 SW Thomas (9780_CR86) 2013; 39 9780_CR54 9780_CR53 9780_CR50 EW Myers (9780_CR69) 1986; 1 9780_CR9 9780_CR8 N Meng (9780_CR65) 2011; 46 9780_CR1 9780_CR2 9780_CR5 9780_CR89 9780_CR4 9780_CR88 9780_CR7 9780_CR85 P Bille (9780_CR6) 2005; 337 9780_CR84 9780_CR87 9780_CR81 9780_CR80 9780_CR83 9780_CR82 9780_CR78 9780_CR74 9780_CR73 9780_CR76 9780_CR75 9780_CR72 9780_CR71 9780_CR27 J Xuan (9780_CR95) 2017; 43 9780_CR28 9780_CR23 9780_CR22 9780_CR25 C Le Goues (9780_CR45) 2012; 38 9780_CR24 9780_CR21 9780_CR20 9780_CR19 9780_CR16 9780_CR15 9780_CR18 MA Jaro (9780_CR29) 1989; 84 9780_CR17 9780_CR12 9780_CR11 9780_CR13 9780_CR10 9780_CR97 M Pawlik (9780_CR79) 2011; 5 9780_CR92 M Monperrus (9780_CR68) 2018; 51 9780_CR91 9780_CR94 M Martinez (9780_CR61) 2015; 20 9780_CR93 9780_CR90 AT Ying (9780_CR96) 2004; 30 A Duley (9780_CR14) 2012; 19 |
| References_xml | – reference: Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Proceedings of the 43rd annual ACM SIGPLAN-SIGACT symposium on principles of programming languages. ACM, St. Petersburg, pp 298–312 – reference: Osman H, Lungu M, Nierstrasz O (2014) Mining frequent bug-fix code changes. In: 2014 software evolution week-IEEE conference on software maintenance, reengineering and reverse engineering (CSMR-WCRE), pp 343–347. IEEE – reference: Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) TBar: revisiting template-based automated program repair. In: Proceedings of the 28th international symposium on software testing and analysis – reference: Abreu R, Zoeteweij P, Van Gemund A J (2007) On the accuracy of spectrum-based fault localization. In: Testing: Academic and industrial conference practice and research techniques-MUTATION (TAICPART-MUTATION 2007), pp 89–98. IEEE – reference: PawlikMAugstenNRted: A robust algorithm for the tree edit distanceProceedings of the VLDB Endowment20115433434510.14778/2095686.2095692 – reference: Xiong Y, Wang J, Yan R, Zhang J, Han S, Huang G, Zhang L (2017) Precise condition synthesis for program repair. In: Proceedings of the 39th international conference on software engineering. IEEE, Buenos Aires, pp 416–426 – reference: Jiang J, Xiong Y, Zhang H, Gao Q, Chen X (2018) Shaping program repair space with existing patches and similar code. In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, pp 298–309. ACM – reference: PanKKimSWhiteheadEJToward an understanding of bug fix patternsEmpir Softw Eng200914328631510.1007/s10664-008-9077-5 – reference: Hashimoto M, Mori A (2008) Diff/ts: A tool for fine-grained structural change analysis. In: 2008 15th working conference on reverse engineering, pp 279–288. IEEE – reference: Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering. ACM, Bergamo, pp 166–178 – reference: Martinez M, Monperrus M (2016) Astor: A program repair library for java. In: Proceedings of the 25th international symposium on software testing and analysis. ACM, Saarbru̇cken, pp 441–444 – reference: Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA (2018) Dissection of a bug dataset: Anatomy of 395 patches from Defects4J. In: Proceedings of SANER – reference: Falleri JR GumTree. https://github.com/GumTreeDiff/gumtree (Last Access: Mar. 2018.) – reference: Nguyen HA, Nguyen AT, Nguyen TN (2013) Filtering noise in mixed-purpose fixing commits to improve defect prediction and localization. In: 2013 IEEE 24th international symposium on software reliability engineering (ISSRE), pp 138–147. IEEE – reference: Lin W, Chen Z, Ma W, Chen L, Xu L, Xu B (2016) An empirical study on the characteristics of python fine-grained source code change types. In: 2016 IEEE international conference on software maintenance and evolution (ICSME), pp 188–199. IEEE – reference: Martinez M, Duchien L, Monperrus M (2013) Automatically extracting instances of code change patterns with ast analysis. In: 2013 29th IEEE international conference on software maintenance (ICSM), pp 388–391. IEEE – reference: Tao Y, Kim S (2015) Partitioning composite code changes to facilitate code review. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 180–190. IEEE – reference: Lee J, Kim D, Bissyandé TF, Jung W, Le Traon Y (2018) Bench4bl: reproducibility study on the performance of ir-based bug localization. In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis, pp 61–72. ACM – reference: Huang K, Chen B, Peng X, Zhou D, Wang Y, Liu Y, Zhao W (2018) Cldiff: generating concise linked code differences. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pp 679–690. ACM – reference: Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic patch generation for null pointer exceptions using metaprogramming. In: Proceedings of the 24th international conference on software analysis, evolution and reengineering, pp 349–358. IEEE – reference: Tan SH, Roychoudhury A (2015) Relifix: Automated repair of software regressions. In: Proceedings of the 37th international conference on software engineering-volume 1, pp 471–482. IEEE Press – reference: Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y (2018a) Mining fix patterns for findbugs violations. IEEE Transactions on Software Engineering – reference: Livshits B, Zimmermann T (2005) DynaMine: Finding common error patterns by mining software revision histories. In: Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on foundations of software engineering, ESEC/FSE-13. ACM, New York, pp 296–305. https://doi.org/10.1145/1081706.1081754 – reference: BillePA survey on tree edit distance and related problemsTheor Comput Sci20053371-3217239214122210.1016/j.tcs.2004.12.030 – reference: Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and bug tracking systems. In: Proceeding of the 19th ICSM, pp 23–32. IEEE – reference: Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In: Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pp 550–554. IEEE Computer Society – reference: Long F, Amidon P, Rinard M (2017) Automatic inference of code transforms for patch generation. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 727–739 – reference: Le XD, Lo D, Le Goues C (2016a) History driven program repair. In: Proceedings of the 23rd international conference on software analysis, evolution, and reengineering, vol 1, pp 213–224. IEEE – reference: Winkler WE (1990) String comparator metrics and enhanced decision rules in the fellegi-sunter model of record linkage – reference: Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 international conference on software engineering, pp 802–811. IEEE Press – reference: Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon Y (2019) Ifixr: bug report driven program repair. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 314–325. ACM – reference: Coker Z, Hafiz M (2013) Program transformations to fix c integers. In: Proceedings of the international conference on software engineering. IEEE, San Francisco, pp 792–801 – reference: Bhatia S, Singh R (2016) Automated correction for syntax errors in programming assignments using recurrent neural networks. arXiv:1603.06129 – reference: Padioleau Y, Lawall J, Hansen RR, Muller G (2008) Documenting and Automating Collateral Evolutions in Linux Device Drivers. In: Proceedings of the 3rd ACM SIGOPS/EuroSys european conference on computer systems 2008, Eurosys ’08. https://doi.org/10.1145/1352592.1352618. ACM, New York, pp 247–260 – reference: Meng N, Kim M, McKinley KS (2013) Lase: locating and applying systematic edits by learning from examples. In: Proceedings of the 2013 international conference on software engineering, pp 502–511. IEEE Press – reference: MengNKimMMcKinleyKSSystematic editing: Generating program transformations from an exampleACM SIGPLAN Not201146632934210.1145/1993316.1993537 – reference: Yue R, Meng N, Wang Q (2017) A characterization study of repeated bug fixes. In: 2017 IEEE international conference on software maintenance and evolution (ICSME), pp 422–432. IEEE – reference: Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In: Proceedings of the 27th IEEE/ACM international conference on automated software engineering, pp 378–381. ACM – reference: Koyuncu A, Bissyandé TF, Kim D, Liu K, Klein J, Monperrus M, Traon Y L (2019) D&c: A divide-and-conquer approach to ir-based bug localization. arXiv:1902.02703 – reference: Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 262–273. IEEE – reference: MartinezMMonperrusMMining software repair models for reasoning on the search space of automated program fixingEmpir Softw Eng201520117620510.1007/s10664-013-9282-8 – reference: Martinez M, Monperrus M (2018) Ultra-large repair search space with automatically mined templates: The cardumen mode of astor. In: Proceedings of the 10th SSBSE, pp 65–86. Springer – reference: Liu X, Zhong H (2018) Mining stackoverflow for program repair. In: Proceedings of the 25th international conference on software analysis, evolution and reengineering, pp 118–129. IEEE – reference: MonperrusMAutomatic software repair: a bibliographyACM Comput Surveys (CSUR)20185111710.1145/3105906 – reference: Fluri B, Gall HC (2006) Classifying change types for qualifying change couplings. In: 14th IEEE international conference on program comprehension, 2006. ICPC 2006, pp 35–45. IEEE – reference: DuleyASpandikowCKimMVdiff: A program differencing algorithm for verilog hardware description languageAutom Softw Eng201219445949010.1007/s10515-012-0107-6 – reference: Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: Proceedings of the 34th international conference on software engineering, pp 386–396. IEEE Press – reference: Le XBD, Chu DH, Lo D, Le Goues C, Visser W (2017) S3: syntax-and semantic-guided repair synthesis via programming by examples. In: Proceedings of the 11th joint meeting on foundations of software engineering. ACM, Paderborn, pp 593–604 – reference: Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: program repair via semantic analysis. In: Proceedings of the 35th ICSE, pp 772–781. IEEE – reference: Skiena SS (1997) The stony brook algorithm repository. http://www.cs.sunysb.edu/algorith/implement/nauty/implement. shtml – reference: Xin Q, Reiss SP (2017) Leveraging syntax-related code for automated program repair. In: Proceedings of the 32nd IEEE/ACM international conference on automated software engineering, pp 660–670. IEEE – reference: Weissgerber P, Diehl S (2006) Identifying refactorings from source-code changes. In: 21st IEEE/ACM international conference on automated software engineering, 2006. ASE’06, pp 231–240. IEEE – reference: Andersen J, Nguyen AC, Lo D, Lawall JL, Khoo SC (2012) Semantic patch inference. In: 2012 Proceedings of the 27th IEEE/ACM international conference on automated software engineering (ASE), pp 382–385. IEEE – reference: Kim S, Pan K, Whitehead Jr E (2006) Memories of bug fixes. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, pp 35–45. ACM – reference: Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) Avatar: Fixing semantic bugs with fix patterns of static analysis violations. In: Proceedings of the IEEE 26th international conference on software analysis, evolution and reengineering, pp 456–467. IEEE – reference: Le XBD, Le Q L, Lo D, Le Goues C (2016b) Enhancing automated program repair with deductive verification. In: Proceedings of the international conference on software maintenance and evolution (ICSME). IEEE, Raleigh, pp 428–432 – reference: XuanJMartinezMDeMarcoFClementMMarcoteSLDurieuxTLe BerreDMonperrusMNopol: Automatic repair of conditional statement bugs in java programsIEEE Trans Softw Eng2017431345510.1109/TSE.2016.2560811 – reference: Kim M, Notkin D (2009) Discovering and representing systematic code changes. In: Proceedings of the 31st international conference on software engineering, pp 309–319. IEEE Computer Society – reference: Oumarou H, Anquetil N, Etien A, Ducasse S, Taiwe KD (2015) Identifying the exact fixing actions of static rule violation. In: 2015 IEEE 22nd international conference on software analysis, evolution and reengineering (SANER), pp 371–379. IEEE – reference: MartinezMDurieuxTSommerardRXuanJMonperrusMAutomatic repair of real bugs in java: A large-scale experiment on the defects4j datasetEmpir Softw Eng20172241936196410.1007/s10664-016-9470-4 – reference: Hanam Q, Brito FSDM, Mesbah A (2016) Discovering bug patterns in javascript. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 144–156. ACM – reference: YingATMurphyGCNgRChu-CarrollMCPredicting source code changes by mining change historyIEEE Trans Softw Eng200430957458610.1109/TSE.2004.52 – reference: Al-Ekram R, Adma A, Baysal O (2005) Diffx: An algorithm to detect changes in multi-version xml documents. In: Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative research, pp 1–11. IBM Press – reference: MyersEWAno (nd) difference algorithm and its variationsAlgorithmica198611-4251266155430510.1007/BF01840446 – reference: Liu K, Koyuncu A, Kim K, Kim D, Bissyandé TF (2018) LSRepair: Live search of fix ingredients for automated program repair. In: Proceedings of the 25th Asia-Pacific software engineering conference, pp 658–662 – reference: Hua J, Zhang M, Wang K, Khurshid S (2018) Towards practical program repair with on-demand candidate generation. In: Proceedings of the 40th international conference on software engineering, pp 12–23. ACM – reference: JaroMAAdvances in record-linkage methodology as applied to matching the 1985 census of tampa, floridaJ Am Stat Assoc19898440641442010.1080/01621459.1989.10478785 – reference: Le GouesCNguyenTForrestSWeimerWGenProg: A generic method for automatic software repairTSE20123815472 – reference: Le GouesCNguyenTForrestSWeimerWGenprog: A generic method for automatic software repairIEEE Trans Softw Eng2012381547210.1109/TSE.2011.104 – reference: Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: Looking for simple program repairs. In: Proceedings of the 37th international conference on software engineering-volume 1. IEEE, Florence, pp 448–458 – reference: Park J, Kim M, Ray B, Bae DH (2012) An empirical study of supplementary bug fixes. In: Proceedings of the 9th IEEE working conference on mining software repositories, pp 40–49. IEEE Press – reference: Chilowicz M, Duris E, Roussel G (2009) Syntax tree fingerprinting for source code similarity detection. In: IEEE 17th international conference on program comprehension, 2009. ICPC’09, pp 243–247. IEEE – reference: Brunel J, Doligez D, Hansen RR, Lawall JL, Muller G (2009) A foundation for flow-based program matching: Using temporal logic and model checking. In: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’09. ACM, New York, pp 114–126. https://doi.org/10.1145/1480881.1480897 – reference: Saha RK, Lyu Y, Yoshida H, Prasad MR (2017) Elixir: Effective object-oriented program repair. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), pp 648–659. IEEE – reference: Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi J, Nguyen TN (2010) Recurring bug fixes in object-oriented programs. In: 2010 ACM/IEEE 32nd international conference on software engineering, vol 1, pp 315–324. IEEE – reference: Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of ACM/IEEE international conference on automated software engineering. ACM, Vasteras, pp 313–324 – reference: Liu K, Kim D, Koyuncu A, Li L, Bissyandé TF, Le Traon Y (2018b) A closer look at real-world patches. In: 2018 IEEE international conference on software maintenance and evolution, pp 275–286. IEEE – reference: Molderez T, Stevens R, De Roover C (2017) Mining change histories for unknown systematic edits. In: Procee dings of the 14th international conference on mining software repositories, pp 248–256. IEEE Press – reference: NeamtiuIFosterJSHicksMUnderstanding source code evolution using abstract syntax tree matchingACM SIGSOFT Softw Eng Notes20053041510.1145/1082983.1083143 – reference: Koyuncu A, Bissyandé T, Kim D, Klein J, Monperrus M, Le Traon Y (2017) Impact of tool support in patch construction. In: Proceedings of the 26th ACM SIGSOFT international symposium on software testing and analysis. ACM, New York, pp 237–248 – reference: Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search. In: Proceedings of the 30th IEEE/ACM international conference on automated software engineering (ASE). IEEE, Lincoln, pp 295–306 – reference: ThomasSWNagappanMBlosteinDHassanAEThe impact of classifier configuration and classifier combination on bug localizationTSE2013391014271443 – reference: Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding patches using genetic programming. In: Proceedings of the 31st international conference on software engineering, May 16-24. IEEE, Vancouver, pp 364–374 – reference: AndersenJLawallJLGeneric patch inferenceAuto Softw Eng201017211914810.1007/s10515-010-0062-z – reference: Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: Tree differencing for fine-grained source code change extraction. IEEE Transactions on software engineering 33(11) – reference: Kim M, Notkin D, Grossman D (2007) Automatic inference of structural changes for matching across program versions. In: ICSE, vol 7, pp 333–343. Citeseer – reference: Gupta R, Pal S, Kanade A, Shevade S (2017) Deepfix: Fixing common c language errors by deep learning. In: AAAI, pp 1345–1351 – reference: Kreutzer P, Dotzler G, Ring M, Eskofier BM, Philippsen M (2016) Automatic clustering of code changes. In: Proceedings of the 13th international conference on mining software repositories, MSR ’16. ACM, New York, pp 61–72. https://doi.org/10.1145/2901739.2901749. http://doi.acm.org.proxy.bnl.lu/10.1145/2901739.2901749 – reference: Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y (2019b) You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019 12th IEEE conference on software testing, validation and verification (ICST), pp 102–113. IEEE – reference: Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch generation for better automated program repair. In: Proceedings of the 40th international conference on software engineering, pp 1–11. ACM – reference: Herzig K, Zeller A (2013) The impact of tangled code changes. In: Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13. IEEE, San Francisco, pp 121–130 – reference: Rolim R, Soares G, Gheyi R, D’Antoni L (2018) Learning quick fixes from code repositories. arXiv:1803.03806 – reference: Chawathe SS, Rajaraman A, Garcia-Molina H, Widom J (1996) Change Detection in Hierarchically Structured Information. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, SIGMOD ’96. ACM, New York, pp 493–504. https://doi.org/10.1145/233269.233366 – reference: Chen L, Pei Y, Furia CA (2017) Contract-based program repair without the contracts. In: Proceedings of the 32nd IEEE/ACM international conference on automated software engineering. IEEE, Urbana, pp 637–647 – reference: HovemeyerDPughWFinding bugs is easyACM Sigplan Notices200439129210610.1145/1052883.1052895 – reference: Just R, Jalali D, Ernst MD (2014) Defects4j: A database of existing faults to enable controlled testing studies for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis. ACM, San Jose, pp 437–440 – reference: Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, L’Aquila, pp 463– 466 – ident: 9780_CR35 doi: 10.1109/ICSE.2007.20 – ident: 9780_CR28 doi: 10.1145/3238147.3238219 – ident: 9780_CR84 doi: 10.1109/ICSE.2015.65 – ident: 9780_CR83 doi: 10.1109/SANER.2018.8330203 – ident: 9780_CR31 doi: 10.1145/2610384.2628055 – volume: 43 start-page: 34 issue: 1 year: 2017 ident: 9780_CR95 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2016.2560811 – ident: 9780_CR47 doi: 10.1109/ICSME.2016.25 – ident: 9780_CR12 doi: 10.1109/ICSE.2013.6606625 – volume: 38 start-page: 54 issue: 1 year: 2012 ident: 9780_CR44 publication-title: TSE – ident: 9780_CR53 doi: 10.1109/APSEC.2018.00085 – ident: 9780_CR89 doi: 10.1109/ASE.2006.41 – ident: 9780_CR92 – volume: 39 start-page: 92 issue: 12 year: 2004 ident: 9780_CR26 publication-title: ACM Sigplan Notices doi: 10.1145/1052883.1052895 – ident: 9780_CR64 doi: 10.1109/ICSE.2015.63 – ident: 9780_CR11 doi: 10.1109/ICPC.2009.5090050 – volume: 39 start-page: 1427 issue: 10 year: 2013 ident: 9780_CR86 publication-title: TSE – volume: 51 start-page: 17 issue: 1 year: 2018 ident: 9780_CR68 publication-title: ACM Comput Surveys (CSUR) doi: 10.1145/3105906 – ident: 9780_CR76 doi: 10.1145/1352592.1352618 – ident: 9780_CR57 doi: 10.1145/2786805.2786811 – ident: 9780_CR19 – volume: 46 start-page: 329 issue: 6 year: 2011 ident: 9780_CR65 publication-title: ACM SIGPLAN Not doi: 10.1145/1993316.1993537 – volume: 84 start-page: 414 issue: 406 year: 1989 ident: 9780_CR29 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478785 – ident: 9780_CR88 doi: 10.1109/ICSE.2009.5070536 – ident: 9780_CR97 doi: 10.1109/ICSME.2017.16 – ident: 9780_CR52 doi: 10.1145/3293882.3330577 – ident: 9780_CR13 doi: 10.1109/ASE.2009.15 – ident: 9780_CR27 doi: 10.1145/3180155.3180245 – ident: 9780_CR32 doi: 10.1109/ASE.2015.60 – ident: 9780_CR93 doi: 10.1109/ASE.2017.8115676 – ident: 9780_CR71 doi: 10.1109/ISSRE.2013.6698913 – ident: 9780_CR58 doi: 10.1145/2837614.2837617 – volume: 22 start-page: 1936 issue: 4 year: 2017 ident: 9780_CR60 publication-title: Empir Softw Eng doi: 10.1007/s10664-016-9470-4 – ident: 9780_CR37 doi: 10.1145/3092703.3092713 – ident: 9780_CR9 doi: 10.1145/233269.233366 – ident: 9780_CR17 doi: 10.1145/2642937.2642982 – ident: 9780_CR73 doi: 10.1145/1806799.1806847 – ident: 9780_CR25 doi: 10.1109/MSR.2013.6624018 – volume: 337 start-page: 217 issue: 1-3 year: 2005 ident: 9780_CR6 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2004.12.030 – ident: 9780_CR24 doi: 10.1109/WCRE.2008.44 – volume: 30 start-page: 1 issue: 4 year: 2005 ident: 9780_CR70 publication-title: ACM SIGSOFT Softw Eng Notes doi: 10.1145/1082983.1083143 – ident: 9780_CR74 doi: 10.1109/CSMR-WCRE.2014.6747191 – ident: 9780_CR51 doi: 10.1109/ICST.2019.00020 – ident: 9780_CR48 – ident: 9780_CR75 doi: 10.1109/SANER.2015.7081847 – ident: 9780_CR15 doi: 10.1109/SANER.2017.7884635 – ident: 9780_CR43 doi: 10.1109/ICSME.2016.66 – volume: 1 start-page: 251 issue: 1-4 year: 1986 ident: 9780_CR69 publication-title: Algorithmica doi: 10.1007/BF01840446 – ident: 9780_CR55 doi: 10.1145/1081706.1081754 – volume: 38 start-page: 54 issue: 1 year: 2012 ident: 9780_CR45 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2011.104 – ident: 9780_CR90 doi: 10.1145/3180155.3180233 – ident: 9780_CR23 doi: 10.1145/2950290.2950308 – ident: 9780_CR81 doi: 10.1109/ASE.2017.8115675 – ident: 9780_CR4 doi: 10.1145/2351676.2351753 – ident: 9780_CR2 – ident: 9780_CR94 doi: 10.1109/ICSE.2017.45 – volume: 5 start-page: 334 issue: 4 year: 2011 ident: 9780_CR79 publication-title: Proceedings of the VLDB Endowment doi: 10.14778/2095686.2095692 – ident: 9780_CR82 – ident: 9780_CR42 doi: 10.1109/SANER.2016.76 – ident: 9780_CR59 doi: 10.1109/ICSM.2013.54 – ident: 9780_CR18 – ident: 9780_CR30 doi: 10.1145/3213846.3213871 – ident: 9780_CR91 doi: 10.1145/2970276.2970359 – ident: 9780_CR34 doi: 10.1109/ICSE.2009.5070531 – ident: 9780_CR1 doi: 10.1109/TAIC.PART.2007.13 – ident: 9780_CR20 doi: 10.1109/ASE.2008.74 – ident: 9780_CR5 – ident: 9780_CR63 doi: 10.1007/978-3-319-99241-9_3 – ident: 9780_CR56 doi: 10.1145/3106237.3106253 – ident: 9780_CR50 doi: 10.1109/SANER.2019.8667970 – ident: 9780_CR54 doi: 10.1109/SANER.2018.8330202 – volume: 14 start-page: 286 issue: 3 year: 2009 ident: 9780_CR77 publication-title: Empir Softw Eng doi: 10.1007/s10664-008-9077-5 – ident: 9780_CR10 doi: 10.1109/ASE.2017.8115674 – ident: 9780_CR67 doi: 10.1109/MSR.2017.12 – ident: 9780_CR80 – ident: 9780_CR46 doi: 10.1145/3213846.3213856 – volume: 17 start-page: 119 issue: 2 year: 2010 ident: 9780_CR3 publication-title: Auto Softw Eng doi: 10.1007/s10515-010-0062-z – volume: 19 start-page: 459 issue: 4 year: 2012 ident: 9780_CR14 publication-title: Autom Softw Eng doi: 10.1007/s10515-012-0107-6 – ident: 9780_CR78 – ident: 9780_CR7 doi: 10.1145/1480881.1480897 – ident: 9780_CR87 doi: 10.1109/ICSE.2012.6227176 – ident: 9780_CR72 doi: 10.1109/ICSE.2013.6606623 – ident: 9780_CR8 doi: 10.1145/2351676.2351752 – ident: 9780_CR40 doi: 10.1145/2901739.2901749 – ident: 9780_CR66 doi: 10.1109/ICSE.2013.6606596 – ident: 9780_CR16 – volume: 20 start-page: 176 issue: 1 year: 2015 ident: 9780_CR61 publication-title: Empir Softw Eng doi: 10.1007/s10664-013-9282-8 – volume: 30 start-page: 574 issue: 9 year: 2004 ident: 9780_CR96 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2004.52 – ident: 9780_CR85 doi: 10.1109/MSR.2015.24 – ident: 9780_CR22 doi: 10.1609/aaai.v31i1.10742 – ident: 9780_CR21 doi: 10.1109/TSE.2007.70731 – ident: 9780_CR41 – ident: 9780_CR36 doi: 10.1145/1181775.1181781 – ident: 9780_CR38 – ident: 9780_CR62 doi: 10.1145/2931037.2948705 – ident: 9780_CR39 doi: 10.1145/3338906.3338935 – ident: 9780_CR49 doi: 10.1109/ICSME.2018.00037 – ident: 9780_CR33 doi: 10.1109/ICSE.2013.6606626 |
| SSID | ssj0009745 |
| Score | 2.6212013 |
| Snippet | Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1980 |
| SubjectTerms | Automation Clustering Compilers Computer Science Context Debugging Empirical software engineering Fix patterns Interpreters Patches Patching Program repair Programming Languages Repair Scripts Software development Software Engineering/Programming and Operating Systems Source code Trees |
| SummonAdditionalLinks | – databaseName: Springer Standard Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDkgLlBpadY25TYNJi6bEI9ptyhpU6hA3dR2aNqvx8naFRCaBOembmXH9efG_ozQuSIkoFJSS1L9t8qOwOciT1ltETkO4HMSSGmGTXiDARuN_PuiKSwrq93LI0nzpf7S7Oa6umJCl_h4rGXN19EGhDum3fHhcVhR7XpmNLEm17MoRPSiVeZ3Gd_DUYUxl8eiPyhETdjp1f_3wjtou4CZuLPYF7toTSV7qF6OcMCFR--jbi-e9XX_3zXum1ERWA9RAXSd4yie4Ylh30wyDNAWi2k-BnyrQlwUdcHaiYjTA_Tcu33q3lnFXAUrgGwq153jOkq3hGP7YChKia0odXzlQTJGWGg7igkaUQAT0vdo6Doq9GRICAXwIVsRPUS1ZJyoI4RBDmSylEjminYkAulKJpgEIOVDJuaEDURK9fKgIB3Xsy_eeUWXrLXEQUvcaInPG-hyec9kQbmxcnWztBov3C_jujAWoAyA3Qa6Ko1TXV4l7WJh7eWTNf32TTzs8HH6wt_yV657mXz_-G9yT9CWrRN1UynZRLU8napTtBl85HGWnpn9-wm8Lujl priority: 102 providerName: Springer Nature |
| Title | FixMiner: Mining relevant fix patterns for automated program repair |
| URI | https://link.springer.com/article/10.1007/s10664-019-09780-z https://www.proquest.com/docview/2400151150 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273899 |
| Volume | 25 |
| WOSCitedRecordID | wos000531720100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1573-7616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009745 issn: 1573-7616 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjSgveUAsEFHH5MWCeFUsVBUvIRYrThyIQG1pU1Tx67lznUYwdGHJksSOcrbvO_vu-wD2NeeJUEo4StBulZvhnMsC7ZzEmechPueJUkZsImi1wufnqG033AY2rbJcE81CnXYT2iM_plxH9E6IX856nw6pRtHpqpXQmIU5YklwTerefUW6GxiRYqLZcwT6dls0Y0vnfJ_yLyhhKAgbzvdvx1ShzckB6R8yUeOAmkv__fRlWLTQk52Px8oKzOjOKiyVsg7MzvI1uGzmo1uqCTxlt0Y-gpGwCiLugmX5iPUMI2dnwBDusnhYdBHz6pTZRC98thfn_XV4bF4_XN44VmvBSTDCKqianDx3I_bcCI0nBHe1EF6kAwzQeJi6ng5jkQkEGCoKROp7Og1UyrlAQKIamdiAWqfb0ZvAsB2MbgVXoR-fZHGifBXGoUJwFWF05qV14OWPloklIic9jA9ZUSiTcSQaRxrjyO86HE7e6Y1pOKY-vVMaQtopOZCVFepwVNq0uj2ttYOx3Sc9EyX3Vf50Lrv9V_levEmqb4qirendbsOCS8G6yZbcgVrRH-pdmE--inzQ34O5i-tW-27PjGC8tr0XvN7dP_0AeDf1bQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VtBK9kFJADYR2Dy0XsMh64xcSQlXTKFEeQiKg3BavvaZWURISB0J_FL-RmY0dix5yy4Gz1-vHzM5jd-b7AM4155FQSlhK0G6VneCaSzxtNcPEcTA-55FShmzCGw798Tj4uAd_il4YKqssbKIx1PE0oj3yt1TriN4J45cPsx8WsUbR6WpBobFWi57-_QtTtsX7bgvle2Hb7evRVcfKWQWsCHOJjPqmyUc1QscO8DWF4LYWwgm0h6kI92Pb0X4oEoGuVAWeiF1Hx56KORfoelUjETjvA9hvkvU3pYKfSpBfz5AiE6yfJTCWyJt08lY916V6DypQ8vyGdfevIyyj282B7D3wUuPw2tX_7VcdwaM8tGaX67XwGPb05BiqBW0Fy63YE7hqp6sB9Ty-YwNDj8GIOAYziowl6YrNDOLoZMEwnGfhMptiTK9jlhey4dhZmM6fwuedfMozqEymE30CDOfB7F1w5bthMwkj5So_9BUGjwFmn05cA14IVkY50DrxfXyXJUQ0KYNEZZBGGeRdDV5v7pmtYUa2jq4Xgpe5yVnIUuo1eFPoUHl522yv1nq2eTJBjrfSL5dyOv8mb7MbSf1bQfB8-2PP4GFnNOjLfnfYewGHNm1MmMrQOlSy-VK_hIPoZ5Yu5qdm1TD4umvd-wuoiEpb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFiEulAIVoS340HKBVeN19wsJVVHTiKpNlAOgiIu73vWWFVU2TTZtmp_Gr2PG8WYFh9x64Lxe74efPW_smXkA-5rzRCglHCVot8rNcM5lgXaO4szzkJ_zRCkjNhH0euFgEPXX4HeVC0NhldWaaBbqtEhoj_yQYh3ROiF_OcxsWES_3Tke3TikIEUnrZWcxgIi5_r-Dt23yeezNo71get2Tr-efHGswoCToF9RUg412atm7LkRvrIQ3NVCeJEO0C3hYep6OoxFJtCsqigQqe_pNFAp5wLNsGpmAvt9BBsB-pjk-PW9H3XB38AIJFOJP0cgr7AJOzZtz_cp9oOClYKw6cz_Noo1010ezv5TyNQYv87m__zbnsMzS7lZazFHtmBND1_AZiVnwezq9hJOOvmsS7mQn1jXyGYwEpRBT6NkWT5jI1OJdDhhSPNZPC0L5Po6ZTbADduO4nz8Cr49yKdsw_qwGOrXwLAf9OoFV6EfH2VxonwVxqFCUhmhV-qlDeDVIMvEFmAnHZBrWZeOJmBIBIY0wJDzBnxY3jNalB9Z2Xq3AoG0S9FE1ghowMcKT_XlVb29X2Bu-WQqRd7Ov7dkMb6Sv8qfkvK6oujN6se-gycIOXlx1jvfgacu7VeYgNFdWC_HU70Hj5PbMp-M35oJxODyoaH3BxfkUz4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FixMiner&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Koyuncu%2C+Anil&rft.au=Liu%2C+Kui&rft.au=Bissyande%2C+Tegawende+F.&rft.au=Kim%2C+Dongsun&rft.date=2020-05-01&rft.issn=1573-7616&rft.volume=25&rft.issue=3&rft.spage=1980&rft_id=info:doi/10.1007%2Fs10664-019-09780-z&rft.externalDocID=oai_DiVA_org_kth_273899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |