Polyethylenimine Grafted onto Nano-NiFe2O4@SiO2 for the Removal of CrO42−, Ni2+, and Pb2+ Ions from Aqueous Solutions

Polyethyleneimine (PEI) has been reported to have good potential for the adsorption of metal ions. In this work, PEI was covalently bound to NiFe2O4@SiO2 nanoparticles to form the new adsorbent NiFe2O4@SiO2–PEI. The material allowed for magnetic separation and was characterized via powder X-ray diff...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 29; no. 1; p. 125
Main Authors: Khalaj, Mehdi, Khatami, Seyed-Mola, Kalhor, Mehdi, Zarandi, Maryam, Anthony, Eric Tobechukwu, Klein, Axel
Format: Journal Article
Language:English
Published: Basel MDPI AG 24.12.2023
MDPI
Subjects:
ISSN:1420-3049, 1420-3049
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyethyleneimine (PEI) has been reported to have good potential for the adsorption of metal ions. In this work, PEI was covalently bound to NiFe2O4@SiO2 nanoparticles to form the new adsorbent NiFe2O4@SiO2–PEI. The material allowed for magnetic separation and was characterized via powder X-ray diffraction (PXRD), showing the pattern of the NiFe2O4 core and an amorphous shell. Field emission scanning electron microscopy (FE-SEM) showed irregular shaped particles with sizes ranging from 50 to 100 nm, and energy-dispersive X-ray spectroscopy (EDX) showed high C and N contents of 36 and 39%, respectively. This large amount of PEI in the materials was confirmed by thermogravimetry–differential thermal analysis (TGA-DTA), showing a mass loss of about 80%. Fourier-transform IR spectroscopy (FT-IR) showed characteristic resonances of PEI dominating the spectrum. The adsorption of CrO42−, Ni2+, and Pb2+ ions from aqueous solutions was studied at different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of 149.3, 156.7, and 161.3 mg/g were obtained for CrO42−, Ni2+, and Pb2+, respectively, under optimum conditions using 0.075 g of the adsorbent material at a 250 mg/L ion concentration, pH = 6.5, and room temperature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29010125