Feedback Stabilization for a Reaction-Diffusion System with Nonlocal Reaction Term

We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization Vol. 32; no. 4; pp. 351 - 369
Main Authors: Aniţa, Sebastian, Arnăutu, Viorel, Dodea, Smaranda
Format: Journal Article
Language:English
Published: Philadelphia, PA Taylor & Francis Group 07.03.2011
Taylor & Francis
Subjects:
ISSN:0163-0563, 1532-2467
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [ 6 ]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems.
AbstractList We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [ 6 ]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems.
We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [6]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems.
Author Dodea, Smaranda
Arnăutu, Viorel
Aniţa, Sebastian
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Aniţa
  fullname: Aniţa, Sebastian
  email: sanita@uaic.ro
  organization: Institute of Mathematics "Octav Mayer,"
– sequence: 2
  givenname: Viorel
  surname: Arnăutu
  fullname: Arnăutu, Viorel
  organization: Faculty of Mathematics , University "Al.I. Cuza,"
– sequence: 3
  givenname: Smaranda
  surname: Dodea
  fullname: Dodea, Smaranda
  organization: Faculty of Mathematics , University "Al.I. Cuza,"
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24298090$$DView record in Pascal Francis
BookMark eNqFkT1PHDEQhi1EpBwk_yDFNijVwvhj7TVNFEEIkVAiAamtOZ8tDN41sX06XX59dnNAkSJUlu3nHc3Mc0D2xzQ6Qj5QOKbQwwlQyaGT_JjB9NQJxqTcIwvacdYyIdU-WcxIOzNvyUEp9wDAme4X5PrCudUS7UNzU3EZYviNNaSx8Sk32Fw7tPO1PQ_er8v8cbMt1Q3NJtS75nsaY7IYX7jm1uXhHXnjMRb3_uk8JD8vvtyeXbZXP75-O_t81VoBtLYdcspXqJxiqBSTCrXmdKWsYj1D4ZccNZfaeceXolOorAbsZYcd9F4I5Ifk467uY06_1q5UM4RiXYw4urQuRk8zd0AVf5XstWQMBPQTefREYpkG8xlHG4p5zGHAvDVMTEsDDRMndpzNqZTs_AtCwcxOzLMTMzsxOydT7PSfmA3178JrxhBfC3_ahcM42Rlwk3JcmYrbmPJzo_y_Ff4AdBKk0Q
CODEN NFAODL
CitedBy_id crossref_primary_10_1080_01630563_2015_1018996
crossref_primary_10_1016_j_amc_2013_03_125
Cites_doi 10.1007/978-3-662-00547-7
10.1007/978-94-017-2488-3
10.1016/j.amc.2006.07.042
10.1007/3-540-37689-5
10.1007/s002850000047
10.3934/dcdsb.2009.11.805
10.1051/mmnp:2006004
10.1016/j.mcm.2005.05.013
10.1016/j.na.2004.09.055
10.1007/b98869
10.1016/j.nonrwa.2004.11.003
10.1016/j.amc.2008.09.016
10.1007/978-94-011-0760-0
10.1007/978-1-4612-5282-5
10.1007/978-1-4684-0152-3
10.1016/j.nonrwa.2008.03.009
10.1016/j.nonrwa.2006.05.001
10.1016/S1468-1218(01)00025-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
2015 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/01630563.2010.542266
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 369
ExternalDocumentID 24298090
10_1080_01630563_2010_542266
542266
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTCW
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
AAYXX
CITATION
07G
1TA
AAIKQ
AAKBW
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
DMQIW
DWIFK
IQODW
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c401t-5a313da7e72a77267a9931d7c7282a4fb3a9369efe3b457a7c90a865a508f44a3
IEDL.DBID TFW
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0163-0563
IngestDate Thu Oct 02 11:26:28 EDT 2025
Thu Oct 02 09:48:59 EDT 2025
Mon Jul 21 09:13:20 EDT 2025
Sat Nov 29 01:37:29 EST 2025
Tue Nov 18 20:48:58 EST 2025
Mon Oct 20 23:32:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Numerical iterative algorithm
Necessary and sufficient condition
Stabilization
Eigenvalue
Iterative method
Predator prey system
Feedback control
Prey-predator system
Non linear equation
Secondary 35P15
Feedback
Nonlocal reaction term
Feedback stabilization
Transcendental equation
Approximate method
Eigenvector
Numerical linear algebra
Principal eigenvalue
Reaction diffusion equation
35K57
Primary 92D25
Algorithm
Numerical analysis
Reaction-diffusion system
93D15
Algebraic equation
Population dynamics
35B40
Self adjoint operator
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-5a313da7e72a77267a9931d7c7282a4fb3a9369efe3b457a7c90a865a508f44a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 896220408
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_896220408
proquest_miscellaneous_901650173
crossref_primary_10_1080_01630563_2010_542266
pascalfrancis_primary_24298090
crossref_citationtrail_10_1080_01630563_2010_542266
informaworld_taylorfrancis_310_1080_01630563_2010_542266
PublicationCentury 2000
PublicationDate 3/7/2011
PublicationDateYYYYMMDD 2011-03-07
PublicationDate_xml – month: 03
  year: 2011
  text: 3/7/2011
  day: 07
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2011
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Aniţa L.-I. (CIT0003) 2008; 206
Barbu V. (CIT0010) 1993
CIT0001
CIT0023
CIT0011
CIT0022
Cantrell R.S. (CIT0013) 2003
Babak P. (CIT0009) 2007; 185
Murray J.D. (CIT0021) 2003
Zabczyk J. (CIT0024) 1975; 8
Bensoussan A. (CIT0012) 1992
Lions J.L. (CIT0020) 1988
CIT0014
CIT0002
CIT0005
CIT0016
CIT0004
CIT0015
Haraux A. (CIT0018) 1991
CIT0007
CIT0006
CIT0017
CIT0008
CIT0019
References_xml – ident: CIT0015
  doi: 10.1007/978-3-662-00547-7
– ident: CIT0007
  doi: 10.1007/978-94-017-2488-3
– volume: 185
  start-page: 449
  year: 2007
  ident: CIT0009
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.042
– ident: CIT0019
  doi: 10.1007/3-540-37689-5
– volume-title: Analysis and Control of Nonlinear Infinite Dimensional Systems
  year: 1993
  ident: CIT0010
– ident: CIT0017
  doi: 10.1007/s002850000047
– ident: CIT0006
  doi: 10.3934/dcdsb.2009.11.805
– ident: CIT0016
  doi: 10.1051/mmnp:2006004
– ident: CIT0014
  doi: 10.1016/j.mcm.2005.05.013
– ident: CIT0001
  doi: 10.1016/j.na.2004.09.055
– volume-title: Systèmes Dynamiques Dissipatifs et Applications, RMA 17
  year: 1991
  ident: CIT0018
– volume-title: Mathematical Biology. II. Spatial Models and Biomedical Applications.
  year: 2003
  ident: CIT0021
  doi: 10.1007/b98869
– volume-title: Spatial Ecology via Reaction Diffusion Equations
  year: 2003
  ident: CIT0013
– ident: CIT0002
  doi: 10.1016/j.nonrwa.2004.11.003
– volume: 206
  start-page: 368
  year: 2008
  ident: CIT0003
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.09.016
– ident: CIT0011
  doi: 10.1007/978-94-011-0760-0
– ident: CIT0022
  doi: 10.1007/978-1-4612-5282-5
– volume-title: Controlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués, RMA 8
  year: 1988
  ident: CIT0020
– ident: CIT0023
  doi: 10.1007/978-1-4684-0152-3
– ident: CIT0005
  doi: 10.1016/j.nonrwa.2008.03.009
– volume: 8
  start-page: 895
  year: 1975
  ident: CIT0024
  publication-title: Bull. Acad. Polonaise des Sciences
– ident: CIT0008
  doi: 10.1016/j.nonrwa.2006.05.001
– ident: CIT0004
  doi: 10.1016/S1468-1218(01)00025-6
– volume-title: Representation and Control in Infinite Dimensional Systems
  year: 1992
  ident: CIT0012
SSID ssj0003298
Score 1.8622204
Snippet We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Approximation
Control systems
Control theory
Dynamics
Eigenvalues
Exact sciences and technology
Feedback
Feedback control
Feedback stabilization
Mathematical models
Mathematics
Nonlinear algebraic and transcendental equations
Nonlocal reaction term
Numerical analysis
Numerical analysis. Scientific computation
Numerical iterative algorithm
Numerical linear algebra
Prey-predator system
Primary 92D25, 35K57, 93D15
Principal eigenvalue
Reaction-diffusion system
Sciences and techniques of general use
Secondary 35P15, 35B40
Stabilization
Title Feedback Stabilization for a Reaction-Diffusion System with Nonlocal Reaction Term
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2010.542266
https://www.proquest.com/docview/896220408
https://www.proquest.com/docview/901650173
Volume 32
WOSCitedRecordID wos000288280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: TFW
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QxAEOvBHjMeXAtaJt0qY5IqDiwoSmIXar3DaVJtCG1o7fj9201SY0kOCetKkT259T-zNj1yrKDaBbxiDHBESqHTrg-uDgBmdZIQNQCupmE2o4jCYT_bxSxU9plRRDF5YoorbVpNyQlm1G3A2iFAK-wiZmBVQLSpzb6PlJM8fxa2eKhV83w6UJDs1oa-c2PGTNN60xl1LKJJQotcK2u_hmuWt3FO___0MO2F4DRfmtPTuHbMvMjtjuU8fjWh6zUYzOLYXsjSMopTRaW7TJcckc-MjYqgjnfloUS7p245YAndPtLh_imshTduP4GN3ACXuJH8Z3j07ThcHJMPaqnACEJ3JQRvm4cX6oACGNl6tMYbQGskgFUFNAUxiRykCByrQLURgAQr9CShCnrDebz8wZ4whnQvCVGyIokbkAcI3UItdB7uUgI91nopV_kjUU5dQp4z3xWibTRmIJSSyxEuszp5v1YSk6fhkfrW5tUtVXI83GJuLnqYO1Y9C9D4GOjlzt9hlvz0WCeko_X2Bm5ssyiTR-NVrMaPMQTaVlaCHF-d9XeMF27K03Hnh1yXrVYmmu2Hb2WU3LxaDWji-qnAi1
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4ScCBN2I8c-Ba0TVt0xwRMIHYJoSG4BZ5bSoh0EB04_djN23FhAAJcY_bNE7sL679GeBYJZlFcst0ybERk2rHHvoBeqTgNM3DCJXCstmE6veThwd9U2UTFlVaJd-hc0cUUdpqPtwcjK5T4k4IpjDylS4zK-Ji0HgW5iNytUyfP-jcN8ZYBmU7XJbwWKSunvvmKVPeaYq7lJMmsaB1y13Diy-2u3RIndV_-JQ1WKnQqDh122cdZuxoA5Z7DZVrsQm3HfJvQ0yfBOFSzqR1dZuC5ixQ3FpXGOGdP-b5hCNvwnGgCw7wij5Nip1lM04MyBNswV3nYnB26VWNGLyUrl9jL0LZlhkqqwLSXRArJFTTzlSq6MKGYT6UyH0BbW7lMIwUqlT7mMQREvrLwxDlNsyNXkZ2BwQhmhgD5ceES8JMIvo21DLTUdbOMEx0C2StAJNWLOXcLOPZtGsy02rFDK-YcSvWAq-RenUsHb-MTz7r1ozL6EilWSN_Fj2c2gfN-wjr6MTXfgtEvTEMHVX-_4Ij-zIpTKLpq8loJt8P0VxdRkZS7v59hkeweDnodU33qn-9B0suCE67X-3D3PhtYg9gIX0fPxZvh-VR-QBxRAzf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT-MwDLe4cTrBA3AciPGxywOvFV3TNs0jAioQ3ITQELxFXptICDQQ2_j7sZu2YkKAxL3HbWo79s-pPwD2VVZaJLdMQY5NuKl2GmAYYUACLgoXJ6gUVsMm1GCQ3d7qyzdV_JxWyTG0840iKlvNh_updE1G3AGhFAa-0idmJVwLmv6ARULOKev4ML9pbbGMqmm4TBEwSVM898FT5pzTXOtSzpnECbHN-XkX70x35Y_y1f__kjVYqbGoOPTK8xsW7Hgdlv-1jVwnf-AqJ-82wuJeECrlPFpftSloywLFlfVlEcHxnXMzvncTvgO64OtdMaA9sats14kh-YENuM5PhkenQT2GISgo-JoGCcq-LFFZFZHkolQhYZp-qQpF4RrGbiSRpwJaZ-UoThSqQoeYpQkS9nNxjHITOuPHsd0CQXgmxUiFKaGSuJSIoY21LHVS9kuMM90F2fDfFHWPch6V8WD6TSvTmmOGOWY8x7oQtFRPvkfHF-uzt6I10-pupBaskZ-T9ubUoH0fIR2dhTrsgmj0wtBB5b8vOLaPs4nJNH01mczs4yWaa8vIRMrt7-_wL_y6PM7NxdngfAeW_A046b7ahc70eWb34GfxMr2bPPeqg_IKMnELkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FEEDBACK+STABILIZATION+FOR+A+REACTION-DIFFUSION+SYSTEM+WITH+NONLOCAL+REACTION+TERM&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=ANITA%2C+Sebastian&rft.au=ARNAUTU%2C+Viorel&rft.au=DODEA%2C+Smaranda&rft.date=2011-03-07&rft.pub=Taylor+%26+Francis&rft.issn=0163-0563&rft.volume=32&rft.issue=4-6&rft.spage=351&rft.epage=369&rft_id=info:doi/10.1080%2F01630563.2010.542266&rft.externalDBID=n%2Fa&rft.externalDocID=24298090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon