Feedback Stabilization for a Reaction-Diffusion System with Nonlocal Reaction Term
We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 32; číslo 4; s. 351 - 369 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Taylor & Francis Group
07.03.2011
Taylor & Francis |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [
6
]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems. |
|---|---|
| AbstractList | We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [
6
]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems. We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal stabilizability to zero of one of the two components of the solution while preserving the nonnegativity of both components have been established in [6]. In case of stabilizability, a feedback stabilizing control of harvesting type has been indicated. The rate of stabilization (for the indicated feedback control) is given by the principal eigenvalue of a certain non-selfadjoint operator. A large principal eigenvalue leads to a fast stabilization. The first main goal of this article is to approximate this principal eigenvalue. This is done in two steps. First, we investigate the large-time behavior of the solution to a logistic population dynamics with migration, and next we derive as a consequence a method to approximate the principal eigenvalue. The other main goal is to derive a conceptual iterative algorithm to improve the position of the support of the control in order to get a faster stabilization. Our results apply to prey-predator systems. |
| Author | Dodea, Smaranda Arnăutu, Viorel Aniţa, Sebastian |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Aniţa fullname: Aniţa, Sebastian email: sanita@uaic.ro organization: Institute of Mathematics "Octav Mayer," – sequence: 2 givenname: Viorel surname: Arnăutu fullname: Arnăutu, Viorel organization: Faculty of Mathematics , University "Al.I. Cuza," – sequence: 3 givenname: Smaranda surname: Dodea fullname: Dodea, Smaranda organization: Faculty of Mathematics , University "Al.I. Cuza," |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24298090$$DView record in Pascal Francis |
| BookMark | eNqFkT1PHDEQhi1EpBwk_yDFNijVwvhj7TVNFEEIkVAiAamtOZ8tDN41sX06XX59dnNAkSJUlu3nHc3Mc0D2xzQ6Qj5QOKbQwwlQyaGT_JjB9NQJxqTcIwvacdYyIdU-WcxIOzNvyUEp9wDAme4X5PrCudUS7UNzU3EZYviNNaSx8Sk32Fw7tPO1PQ_er8v8cbMt1Q3NJtS75nsaY7IYX7jm1uXhHXnjMRb3_uk8JD8vvtyeXbZXP75-O_t81VoBtLYdcspXqJxiqBSTCrXmdKWsYj1D4ZccNZfaeceXolOorAbsZYcd9F4I5Ifk467uY06_1q5UM4RiXYw4urQuRk8zd0AVf5XstWQMBPQTefREYpkG8xlHG4p5zGHAvDVMTEsDDRMndpzNqZTs_AtCwcxOzLMTMzsxOydT7PSfmA3178JrxhBfC3_ahcM42Rlwk3JcmYrbmPJzo_y_Ff4AdBKk0Q |
| CODEN | NFAODL |
| CitedBy_id | crossref_primary_10_1080_01630563_2015_1018996 crossref_primary_10_1016_j_amc_2013_03_125 |
| Cites_doi | 10.1007/978-3-662-00547-7 10.1007/978-94-017-2488-3 10.1016/j.amc.2006.07.042 10.1007/3-540-37689-5 10.1007/s002850000047 10.3934/dcdsb.2009.11.805 10.1051/mmnp:2006004 10.1016/j.mcm.2005.05.013 10.1016/j.na.2004.09.055 10.1007/b98869 10.1016/j.nonrwa.2004.11.003 10.1016/j.amc.2008.09.016 10.1007/978-94-011-0760-0 10.1007/978-1-4612-5282-5 10.1007/978-1-4684-0152-3 10.1016/j.nonrwa.2008.03.009 10.1016/j.nonrwa.2006.05.001 10.1016/S1468-1218(01)00025-6 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2011 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2011 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/01630563.2010.542266 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1532-2467 |
| EndPage | 369 |
| ExternalDocumentID | 24298090 10_1080_01630563_2010_542266 542266 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTCW ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGCQS AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ AAYXX CITATION 07G 1TA AAIKQ AAKBW ABEFU ACAGQ ACGEE ADYSH AEUMN AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CRFIH DMQIW DWIFK IQODW IVXBP LJTGL NHB NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c401t-5a313da7e72a77267a9931d7c7282a4fb3a9369efe3b457a7c90a865a508f44a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0163-0563 |
| IngestDate | Thu Oct 02 11:26:28 EDT 2025 Thu Oct 02 09:48:59 EDT 2025 Mon Jul 21 09:13:20 EDT 2025 Sat Nov 29 01:37:29 EST 2025 Tue Nov 18 20:48:58 EST 2025 Mon Oct 20 23:32:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Numerical iterative algorithm Necessary and sufficient condition Stabilization Eigenvalue Iterative method Predator prey system Feedback control Prey-predator system Non linear equation Secondary 35P15 Feedback Nonlocal reaction term Feedback stabilization Transcendental equation Approximate method Eigenvector Numerical linear algebra Principal eigenvalue Reaction diffusion equation 35K57 Primary 92D25 Algorithm Numerical analysis Reaction-diffusion system 93D15 Algebraic equation Population dynamics 35B40 Self adjoint operator |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-5a313da7e72a77267a9931d7c7282a4fb3a9369efe3b457a7c90a865a508f44a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 896220408 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_896220408 proquest_miscellaneous_901650173 crossref_primary_10_1080_01630563_2010_542266 pascalfrancis_primary_24298090 crossref_citationtrail_10_1080_01630563_2010_542266 informaworld_taylorfrancis_310_1080_01630563_2010_542266 |
| PublicationCentury | 2000 |
| PublicationDate | 3/7/2011 |
| PublicationDateYYYYMMDD | 2011-03-07 |
| PublicationDate_xml | – month: 03 year: 2011 text: 3/7/2011 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia, PA |
| PublicationPlace_xml | – name: Philadelphia, PA |
| PublicationTitle | Numerical functional analysis and optimization |
| PublicationYear | 2011 |
| Publisher | Taylor & Francis Group Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
| References | Aniţa L.-I. (CIT0003) 2008; 206 Barbu V. (CIT0010) 1993 CIT0001 CIT0023 CIT0011 CIT0022 Cantrell R.S. (CIT0013) 2003 Babak P. (CIT0009) 2007; 185 Murray J.D. (CIT0021) 2003 Zabczyk J. (CIT0024) 1975; 8 Bensoussan A. (CIT0012) 1992 Lions J.L. (CIT0020) 1988 CIT0014 CIT0002 CIT0005 CIT0016 CIT0004 CIT0015 Haraux A. (CIT0018) 1991 CIT0007 CIT0006 CIT0017 CIT0008 CIT0019 |
| References_xml | – ident: CIT0015 doi: 10.1007/978-3-662-00547-7 – ident: CIT0007 doi: 10.1007/978-94-017-2488-3 – volume: 185 start-page: 449 year: 2007 ident: CIT0009 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.042 – ident: CIT0019 doi: 10.1007/3-540-37689-5 – volume-title: Analysis and Control of Nonlinear Infinite Dimensional Systems year: 1993 ident: CIT0010 – ident: CIT0017 doi: 10.1007/s002850000047 – ident: CIT0006 doi: 10.3934/dcdsb.2009.11.805 – ident: CIT0016 doi: 10.1051/mmnp:2006004 – ident: CIT0014 doi: 10.1016/j.mcm.2005.05.013 – ident: CIT0001 doi: 10.1016/j.na.2004.09.055 – volume-title: Systèmes Dynamiques Dissipatifs et Applications, RMA 17 year: 1991 ident: CIT0018 – volume-title: Mathematical Biology. II. Spatial Models and Biomedical Applications. year: 2003 ident: CIT0021 doi: 10.1007/b98869 – volume-title: Spatial Ecology via Reaction Diffusion Equations year: 2003 ident: CIT0013 – ident: CIT0002 doi: 10.1016/j.nonrwa.2004.11.003 – volume: 206 start-page: 368 year: 2008 ident: CIT0003 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.09.016 – ident: CIT0011 doi: 10.1007/978-94-011-0760-0 – ident: CIT0022 doi: 10.1007/978-1-4612-5282-5 – volume-title: Controlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués, RMA 8 year: 1988 ident: CIT0020 – ident: CIT0023 doi: 10.1007/978-1-4684-0152-3 – ident: CIT0005 doi: 10.1016/j.nonrwa.2008.03.009 – volume: 8 start-page: 895 year: 1975 ident: CIT0024 publication-title: Bull. Acad. Polonaise des Sciences – ident: CIT0008 doi: 10.1016/j.nonrwa.2006.05.001 – ident: CIT0004 doi: 10.1016/S1468-1218(01)00025-6 – volume-title: Representation and Control in Infinite Dimensional Systems year: 1992 ident: CIT0012 |
| SSID | ssj0003298 |
| Score | 1.8623229 |
| Snippet | We consider a two-component reaction-diffusion system with a nonlocal reaction term. A necessary condition and a sufficient condition for the internal... |
| SourceID | proquest pascalfrancis crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 351 |
| SubjectTerms | Approximation Control systems Control theory Dynamics Eigenvalues Exact sciences and technology Feedback Feedback control Feedback stabilization Mathematical models Mathematics Nonlinear algebraic and transcendental equations Nonlocal reaction term Numerical analysis Numerical analysis. Scientific computation Numerical iterative algorithm Numerical linear algebra Prey-predator system Primary 92D25, 35K57, 93D15 Principal eigenvalue Reaction-diffusion system Sciences and techniques of general use Secondary 35P15, 35B40 Stabilization |
| Title | Feedback Stabilization for a Reaction-Diffusion System with Nonlocal Reaction Term |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2010.542266 https://www.proquest.com/docview/896220408 https://www.proquest.com/docview/901650173 |
| Volume | 32 |
| WOSCitedRecordID | wos000288280900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: TFW dateStart: 19790101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4Q4gAH3ojxmHLgGtE16dIcETBxgAmhIbhVTppKE2igdeP3YzdtxYQGEtyTNnVi-4trf2bszPVkTmyTwiQuESq3kbCppiwLor-LAL1uVSh8q4fD9PnZ3H-p4qe0SrpDF4EoorLVpNxgyyYj7hxRCgFfGRKzEqoFJc5t9PykmaPBU2uKZVw1w6UJgmY0tXNLHrLgmxaYSyllEkqUWhHaXXyz3JU7Gmz9_0O22WYNRflFODs7bMVPdtnGXcvjWu6xhwE6NwvuhSMopTTaULTJcckc-IMPVRHialwUcwq78UCAzim6y4e4JvKU7Tg-Qjewzx4H16PLG1F3YRAO714zkYDE_QTtdQwIxfsaENL0cu003tZAFVYCNQX0hZdWJRq0MxGk_QQQ-hVKgTxgq5O3iT9kPFfW2tiCN6lTSS5N36oCEZ_NVaKkhA6TjfwzV1OUU6eM16zXMJnWEstIYlmQWIeJdtZ7oOj4ZXz6dWuzWRUaqTc2kz9P7S4cg_Z9CHRMGpmow3hzLjLUU_r5AhP_Ni-z1PTjGC1munyIodIytJDy6O8rPGbrIeqNB16fsNXZdO5P2Zr7mI3LabfSjk9ACAkf |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0FNQHv8X148yDr8FukzTNo6jLiXuLHCveW5ikKRwne3Ld9e93pmmLi5yC-J606Uwy88t05jcAr-NcNcw2KZ2JRuomFDLUlrMsmP6uQPK6faHw0q5W9emp-zxkE3ZDWiXfodtMFNHbaj7cHIweU-LeEExh5KtyZpbhYtDqOtww5GqZPn-9-DoZY1X27XB5huQpY_XcFU_Z80573KWcNIkdya3NDS9-s929Q1rc-w-fch_uDmhUvM3b5wFcS5uHcOd4onLtHsHJgvxbwHguCJdyJm2u2xS0ZoHiJOXCCPn-rG13HHkTmQNdcIBXrGhR7CyncWJNnuAxfFl8WL87kkMjBhnp-rWVBhWpFG2yJRIarywSqpk3Nlq6sKFug0LuC5japII2Fm10BdaVQUJ_rdaonsDB5mKTnoJodAihDJhcHbVplKuCbgn0hUYbrRTOQI0K8HFgKedmGd_8fCQzHSTmWWI-S2wGcpr1PbN0_GV8_atu_baPjgya9erPUw_39sH0PsI6ri5cMQMxbgxPR5X_v-AmXew6X7uqLMlo1lcPcVxdRkZSPfv3Fb6CW0fr46Vfflx9eg63cxCcdr99AQfby116CTfjj-1Zd3nYH5WfChMNSQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLdgIAQPfCOOj5EHXiN6Tdo0j4hRgRinaTrE3iInTaRp6Dbt7vj7sZu22gkNJHiP29Rx7F9S-2eAt2GuOmablLYKldSdL6RvDGdZMP1dgRR1-0LhQ7NYNCcn9uhKFT-nVfIZOmWiiN5X8-a-6NKYEfeOUAoDX5UTsyquBa1vwi1CzjXb-LL9PvliVfbdcFlCsshYPHfNU3aC0w51KedM4prUlnK_i99cdx-P2gf__yUP4f6ARcX7bDyP4EZcPYZ7Xyci1_UTOG4punkMZ4JQKefR5qpNQVMWKI5jLouQB6cpbfneTWQGdMHXu2JBc-JQOY0TS4oDT-Fb-3H54ZMc2jDIQIevjaxQ0YKiiaZEwuK1QcI0884EQ8c11Mkr5K6AMUXldWXQBFtgU1dI2C9pjeoZ7K3OV_E5iE5770uP0TZBV52ytdeJIJ_vdKWVwhmoUf8uDBzl3Crjh5uPVKaDxhxrzGWNzUBOUheZo-Mv45urS-s2_d3IsLBO_Vl0f8cMpvcR0rFNYYsZiNEuHG1U_vuCq3i-XbvG1mVJLrO5fojl2jJykerFv8_wDdw5Omjd4efFl5dwN9-Ak-2bV7C3udzG13A7_Nycri_3-43yC8vVC_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FEEDBACK+STABILIZATION+FOR+A+REACTION-DIFFUSION+SYSTEM+WITH+NONLOCAL+REACTION+TERM&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=ANITA%2C+Sebastian&rft.au=ARNAUTU%2C+Viorel&rft.au=DODEA%2C+Smaranda&rft.date=2011-03-07&rft.pub=Taylor+%26+Francis&rft.issn=0163-0563&rft.volume=32&rft.issue=4-6&rft.spage=351&rft.epage=369&rft_id=info:doi/10.1080%2F01630563.2010.542266&rft.externalDBID=n%2Fa&rft.externalDocID=24298090 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |