Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SN applied sciences Ročník 1; číslo 9; s. 1047
Hlavní autori: Giacomini, Matteo, Sevilla, Ruben
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2019
Springer Nature B.V
Springer
Predmet:
ISSN:2523-3963, 2523-3971, 2523-3971
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method. Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2523-3963
2523-3971
2523-3971
DOI:10.1007/s42452-019-1065-4