Enumeration of L-convex polyominoes by rows and columns

In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once. Using the ECO method, we prove that the number f n of L-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 347; číslo 1; s. 336 - 352
Hlavní autoři: Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 30.11.2005
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once. Using the ECO method, we prove that the number f n of L-convex polyominoes with perimeter 2 ( n + 2 ) satisfies the rational recurrence relation f n = 4 f n - 1 - 2 f n - 2 , with f 0 = 1 , f 1 = 2 , f 2 = 7 . Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2005.06.031