Enumeration of L-convex polyominoes by rows and columns
In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once. Using the ECO method, we prove that the number f n of L-...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 347; číslo 1; s. 336 - 352 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
30.11.2005
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we consider the class of L-convex polyominoes, i.e. the convex polyominoes in which any two cells can be connected by a path of cells in the polyomino that switches direction between the vertical and the horizontal at most once.
Using the ECO method, we prove that the number
f
n
of L-convex polyominoes with perimeter
2
(
n
+
2
)
satisfies the rational recurrence relation
f
n
=
4
f
n
-
1
-
2
f
n
-
2
, with
f
0
=
1
,
f
1
=
2
,
f
2
=
7
. Moreover, we give a combinatorial interpretation of this statement. In the last section, we present some open problems. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2005.06.031 |