Diffusion LMS with component-wise variable step-size over sensor networks
In this study, the authors propose a novel component-wise variable step-size (CVSS) diffusion distributed algorithm for estimating a specific parameter over sensor networks. The novelty of the CVSS algorithm is that step-sizes vary from each other on different components at each iteration. They deri...
Uloženo v:
| Vydáno v: | IET signal processing Ročník 10; číslo 1; s. 37 - 45 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
01.02.2016
|
| Témata: | |
| ISSN: | 1751-9675, 1751-9683, 1751-9683 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this study, the authors propose a novel component-wise variable step-size (CVSS) diffusion distributed algorithm for estimating a specific parameter over sensor networks. The novelty of the CVSS algorithm is that step-sizes vary from each other on different components at each iteration. They derive the steady-state value of global mean-square deviation (MSD) and relative MSD (RMSD). In the numerical simulations, they compare the proposed CVSS algorithm with several other least mean square (LMS) algorithms. Results show that, when compared with these other algorithms, the CVSS algorithm can effectively reduce steady-state value and speed up convergence rate of RMSD while not sacrificing the convergence rate of MSD. Results also reveal that the proposed CVSS algorithm can achieve reduced difference of steady-state values of relative estimation error on various components. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-9675 1751-9683 1751-9683 |
| DOI: | 10.1049/iet-spr.2015.0033 |