Convex optimisation-based joint channel and power allocation scheme for orthogonal frequency division multiple access networks

This study concerns joint channel and power allocation scheme for multi-user orthogonal frequency division multiple access system. The author's highlight is margin adaptive (MA) resource allocation problem namely minimising the total transmit power of users with rate requirement constraints. MA...

Full description

Saved in:
Bibliographic Details
Published in:IET communications Vol. 9; no. 1; pp. 28 - 32
Main Authors: Liu, Peng, Li, Jiandong, Li, Hongyan, Meng, Yun
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 02.01.2015
Subjects:
ISSN:1751-8628, 1751-8636
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study concerns joint channel and power allocation scheme for multi-user orthogonal frequency division multiple access system. The author's highlight is margin adaptive (MA) resource allocation problem namely minimising the total transmit power of users with rate requirement constraints. MA is generally provable NP-hard; the typical methods are either to relax and round, or to fix the transmission mode of users (e.g. modulation and coding). Differently, they reorganise MA problem with only power variables left and design a novel relaxation scheme to enable the convexity. The polynomial-time algorithm-interior-point method-is employed to solve the relaxation problem and the theoretical complexity is further presented. Simulation results demonstrate that the author's scheme can provide high energy efficiency compared with the existing methods, 100% relative error bounds with respect to the optimum in most cases, and low computational complexity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8628
1751-8636
DOI:10.1049/iet-com.2014.0409