Design and field programmable gate array implementation of cascade neural network based flux estimator for speed estimation in induction motor drives

This study presents design and hardware implementation of cascade neural network (NN) based flux estimator using field programmable gate array (FPGA) for speed estimation in induction motor drives. The main focus of this study is the FPGA implementation of cascade NN based flux estimator. The major...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET electric power applications Ročník 11; číslo 1; s. 121 - 131
Hlavní autoři: Venkadesan, Arunachalam, Himavathi, Srinivasan, Sedhuraman, Karthikeyan, Muthuramalingam, A
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 01.01.2017
Témata:
ISSN:1751-8660, 1751-8679, 1751-8679
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study presents design and hardware implementation of cascade neural network (NN) based flux estimator using field programmable gate array (FPGA) for speed estimation in induction motor drives. The main focus of this study is the FPGA implementation of cascade NN based flux estimator. The major issues in FPGA implementation are optimisation of cost (resource) and execution time. A simple non-linear activation function called as Elliott function is used to reduce the execution time. To reduce the cost, and effectively utilise resource, the concept of layer multiplexing is adopted. The lowest bit precision needed for good performance of the estimator is identified and implemented. The proposed NN based flux estimator using simple excitation function and minimum bit precision is implemented using layer multiplexing technique. The designed estimator is tested on Spartan FPGA kit (3sd1800afg676-4) and the results obtained are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8660
1751-8679
1751-8679
DOI:10.1049/iet-epa.2016.0550