Combined state and multi-innovation parameter estimation for an input non-linear state-space system using the key term separation
In this study, the authors study the state and parameter estimation problem for an input non-linear system consisting of a static non-linear block and a linear time-invariant state space subsystem. Using the filtering technique, a filtering based multi-innovation generalised stochastic gradient (SG)...
Gespeichert in:
| Veröffentlicht in: | IET control theory & applications Jg. 10; H. 13; S. 1503 - 1512 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
29.08.2016
|
| Schlagworte: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, the authors study the state and parameter estimation problem for an input non-linear system consisting of a static non-linear block and a linear time-invariant state space subsystem. Using the filtering technique, a filtering based multi-innovation generalised stochastic gradient (SG) algorithm is proposed for avoiding estimating the redundant parameters based on the key term separation technique. Compared with the multi-innovation generalised SG algorithm, the proposed algorithm has higher parameter estimation accuracy. Two simulation examples are provided to show that the proposed algorithm works well. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2015.1056 |