CIAA-RepDroid: A Fine-Grained and Probabilistic Reputation Scheme for Android Apps Based on Sentiment Analysis of Reviews

To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future internet Ročník 12; číslo 9; s. 145
Hlavní autoři: Tchakounté, Franklin, Yera Pagor, Athanase Esdras, Kamgang, Jean Claude, Atemkeng, Marcellin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2020
Témata:
ISSN:1999-5903, 1999-5903
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To keep its business reliable, Google is concerned to ensure the quality of apps on the store. One crucial aspect concerning quality is security. Security is achieved through Google Play protect and anti-malware solutions. However, they are not totally efficient since they rely on application features and application execution threads. Google provides additional elements to enable consumers to collectively evaluate applications providing their experiences via reviews or showing their satisfaction through rating. The latter is more informal and hides details of rating whereas the former is textually expressive but requires further processing to understand opinions behind it. Literature lacks approaches which mine reviews through sentiment analysis to extract useful information to improve the security aspects of provided applications. This work goes in this direction and in a fine-grained way, investigates in terms of confidentiality, integrity, availability, and authentication (CIAA). While assuming that reviews are reliable and not fake, the proposed approach determines review polarities based on CIAA-related keywords. We rely on the popular classifier Naive Bayes to classify reviews into positive, negative, and neutral sentiment. We then provide an aggregation model to fusion different polarities to obtain application global and CIAA reputations. Quantitative experiments have been conducted on 13 applications including e-banking, live messaging and anti-malware apps with a total of 1050 security-related reviews and 7,835,322 functionality-related reviews. Results show that 23% of applications (03 apps) have a reputation greater than 0.5 with an accent on integrity, authentication, and availability, while the remaining 77% has a polarity under 0.5. Developers should make a lot of effort in security while developing codes and that more efforts should be made to improve confidentiality reputation. Results also show that applications with good functionality-related reputation generally offer a bad security-related reputation. This situation means that even if the number of security reviews is low, it does not mean that the security aspect is not a consumer preoccupation. Unlike, developers put much more time to test whether applications work without errors even if they include possible security vulnerabilities. A quantitative comparison against well-known rating systems reveals the effectiveness and robustness of CIAA-RepDroid to repute apps in terms of security. CIAA-RepDroid can be associated with existing rating solutions to recommend developers exact CIAA aspects to improve within source codes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-5903
1999-5903
DOI:10.3390/fi12090145