A Difference of Convex Functions Algorithm for Switched Linear Regression
This technical note deals with switched linear system identification and more particularly aims at solving switched linear regression problems in a large-scale setting with both numerous data and many parameters to learn. We consider the recent minimum-of-error framework with a quadratic loss functi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automatic control Jg. 59; H. 8; S. 2277 - 2282 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This technical note deals with switched linear system identification and more particularly aims at solving switched linear regression problems in a large-scale setting with both numerous data and many parameters to learn. We consider the recent minimum-of-error framework with a quadratic loss function, in which an objective function based on a sum of minimum errors with respect to multiple submodels is to be minimized. The technical note proposes a new approach to the optimization of this nonsmooth and nonconvex objective function, which relies on Difference of Convex (DC) functions programming. In particular, we formulate a proper DC decomposition of the objective function, which allows us to derive a computationally efficient DC algorithm. Numerical experiments show that the method can efficiently and accurately learn switching models in large dimensions and from many data points. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2014.2301575 |