A Difference of Convex Functions Algorithm for Switched Linear Regression

This technical note deals with switched linear system identification and more particularly aims at solving switched linear regression problems in a large-scale setting with both numerous data and many parameters to learn. We consider the recent minimum-of-error framework with a quadratic loss functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 59; H. 8; S. 2277 - 2282
Hauptverfasser: Tao Pham Dinh, Hoai Minh Le, Hoai An Le Thi, Lauer, Fabien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This technical note deals with switched linear system identification and more particularly aims at solving switched linear regression problems in a large-scale setting with both numerous data and many parameters to learn. We consider the recent minimum-of-error framework with a quadratic loss function, in which an objective function based on a sum of minimum errors with respect to multiple submodels is to be minimized. The technical note proposes a new approach to the optimization of this nonsmooth and nonconvex objective function, which relies on Difference of Convex (DC) functions programming. In particular, we formulate a proper DC decomposition of the objective function, which allows us to derive a computationally efficient DC algorithm. Numerical experiments show that the method can efficiently and accurately learn switching models in large dimensions and from many data points.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2014.2301575