A Parameterized Approximation Algorithm for the Chromatic k-Median Problem
Chromatic <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-median is a frequently encountered problem in the determination of the topological structures of chromosomes. This problem considers a set <inline-formula> <tex-math notati...
Saved in:
| Published in: | IEEE access Vol. 9; pp. 31678 - 31683 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2021
|
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Chromatic <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-median is a frequently encountered problem in the determination of the topological structures of chromosomes. This problem considers a set <inline-formula> <tex-math notation="LaTeX">\mathcal {C} </tex-math></inline-formula> of colored clients and a set <inline-formula> <tex-math notation="LaTeX">\mathcal {F} </tex-math></inline-formula> of facilities located in a metric space, where <inline-formula> <tex-math notation="LaTeX">|\mathcal {C}\cup \mathcal {F}|=n </tex-math></inline-formula>. The goal is to open <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> facilities and assign each client to an opened facility, such that clients with the same color are assigned to different facilities and the sum of the distance from each client to the corresponding facility is minimized. It was known that the chromatic <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-median problem is W[2]-hard if parameterized by <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. This rules out the probability of obtaining an exact FPT(<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>)-time algorithm for the problem. In this paper, we give an FPT(<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>)-time approximation algorithm for chromatic <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-median. The algorithm achieves a <inline-formula> <tex-math notation="LaTeX">(3+\epsilon) </tex-math></inline-formula>-approximation and runs in <inline-formula> <tex-math notation="LaTeX">(k\epsilon ^{-1})^{O(k)}n^{O(1)} </tex-math></inline-formula> time. We propose a different random sampling algorithm for opening facilities, which is the crucial step in getting the constant factor parameterized approximation. |
|---|---|
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2021.3060422 |