Optimal Probabilistic Allocation of Photovoltaic Distributed Generation: Proposing a Scenario-Based Stochastic Programming Model

The recent developments in the design, planning, and operation of distribution systems indicate the need for a modern integrated infrastructure in which participants are managed through the perceptions of a utility company in an economic network (e.g., energy loss reduction, restoration, etc.). The...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 16; číslo 21; s. 7261
Hlavní autori: Kheirkhah, Ali Reza, Meschini Almeida, Carlos Frederico, Kagan, Nelson, Leite, Jonatas Boas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2023
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The recent developments in the design, planning, and operation of distribution systems indicate the need for a modern integrated infrastructure in which participants are managed through the perceptions of a utility company in an economic network (e.g., energy loss reduction, restoration, etc.). The penetration of distributed generation units in power systems are growing due to their significant influence on the key attributes of power systems. As a result, the placement, type, and size of distributed generations have an essential role in reducing power loss and lowering costs. Power loss minimization, investment and cost reduction, and voltage profile improvement combine to form a conceivable goal function for distributed generation allocation in a constrained optimization problem, and they require a complex procedure to control them in the most appropriate way while satisfying network constraints. Such a complex decision-making procedure can be solved by adjusting the dynamic optimal power flow problem to the associated network. The purpose of the present work is to handle the distributed generation allocation problem for photovoltaic units, attempting to reduce energy and investment costs while accounting for generation unpredictability as well as load fluctuation. The problem is analyzed under various scenarios of solar radiation through a stochastic programming technique because of the intense uncertainty of solar energy resources. The formulation of photovoltaic distributed generation allocation is represented as a mixed-integer second-order conic programming problem. The IEEE 33-bus and real-world 136-bus distribution systems are tested. The findings illustrate the efficacy of the proposed mathematical model and the role of appropriate distributed generation allocation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en16217261