Bivariate density estimation using BV regularisation
The problem of bivariate density estimation is studied with the aim of finding the density function with the smallest number of local extreme values which is adequate with the given data. Adequacy is defined via Kuiper metrics. The concept of the taut-string algorithm which provides adequate approxi...
Uložené v:
| Vydané v: | Computational statistics & data analysis Ročník 51; číslo 12; s. 5622 - 5634 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
15.08.2007
Elsevier Science Elsevier |
| Edícia: | Computational Statistics & Data Analysis |
| Predmet: | |
| ISSN: | 0167-9473, 1872-7352 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The problem of bivariate density estimation is studied with the aim of finding the density function with the smallest number of local extreme values which is adequate with the given data. Adequacy is defined via Kuiper metrics. The concept of the taut-string algorithm which provides adequate approximations with a small number of local extrema is generalised for analysing two- and higher dimensional data, using Delaunay triangulation and diffusion filtering. Results are based on equivalence relations in one dimension between the taut-string algorithm and the method of solving the discrete total variation flow equation. The generalisation and some modifications are developed and the performance for density estimation is shown. |
|---|---|
| ISSN: | 0167-9473 1872-7352 |
| DOI: | 10.1016/j.csda.2007.04.019 |