GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing

•Propose a new effective density-based and grid-based clustering algorithm GRIDEN for massive spatial data.•Present a new concept of ε-neighbor cells to improve the clustering accuracy of grid-based algorithm.•Present a parallel computing algorithm for high dimensional density-based clustering to ac...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters Vol. 109; pp. 81 - 88
Main Authors: Deng, Chao, Song, Jinwei, Sun, Ruizhi, Cai, Saihua, Shi, Yinxue
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.07.2018
Elsevier Science Ltd
Subjects:
ISSN:0167-8655, 1872-7344
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Propose a new effective density-based and grid-based clustering algorithm GRIDEN for massive spatial data.•Present a new concept of ε-neighbor cells to improve the clustering accuracy of grid-based algorithm.•Present a parallel computing algorithm for high dimensional density-based clustering to achieve high performance.•Supports for multi-density clustering and incremental density-based clustering. Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in this paper, which supports parallel computing in addition to multi-density clustering. It constructs grids using hyper-square cells and provides users with parameter k to control the balance between efficiency and accuracy to increase the flexibility of the algorithm. Compared with conventional density-based algorithms, it achieves much higher performance by eliminating distance calculations among points based on the newly proposed concept of ε-neighbor cells. Compared with conventional grid-based algorithms, it uses a set of symmetric (2k+1)D cells to identify dense cells and the density-connected relationships among cells. Therefore, the maximum calculated deviation of ε-neighbor points in the grid-based algorithm can be controlled to an acceptable level through parameter k. In our experiments, the results demonstrate that GRIDEN can achieve a reliable clustering result that is infinite closed with respect to the exact DBSCAN as parameter k grows, and it requires computational time that is only linear to N.
AbstractList •Propose a new effective density-based and grid-based clustering algorithm GRIDEN for massive spatial data.•Present a new concept of ε-neighbor cells to improve the clustering accuracy of grid-based algorithm.•Present a parallel computing algorithm for high dimensional density-based clustering to achieve high performance.•Supports for multi-density clustering and incremental density-based clustering. Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in this paper, which supports parallel computing in addition to multi-density clustering. It constructs grids using hyper-square cells and provides users with parameter k to control the balance between efficiency and accuracy to increase the flexibility of the algorithm. Compared with conventional density-based algorithms, it achieves much higher performance by eliminating distance calculations among points based on the newly proposed concept of ε-neighbor cells. Compared with conventional grid-based algorithms, it uses a set of symmetric (2k+1)D cells to identify dense cells and the density-connected relationships among cells. Therefore, the maximum calculated deviation of ε-neighbor points in the grid-based algorithm can be controlled to an acceptable level through parameter k. In our experiments, the results demonstrate that GRIDEN can achieve a reliable clustering result that is infinite closed with respect to the exact DBSCAN as parameter k grows, and it requires computational time that is only linear to N.
Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in this paper, which supports parallel computing in addition to multi-density clustering. It constructs grids using hyper-square cells and provides users with parameter k to control the balance between efficiency and accuracy to increase the flexibility of the algorithm. Compared with conventional density-based algorithms, it achieves much higher performance by eliminating distance calculations among points based on the newly proposed concept of ε-neighbor cells. Compared with conventional grid-based algorithms, it uses a set of symmetric (2k+1)D cells to identify dense cells and the density-connected relationships among cells. Therefore, the maximum calculated deviation of ε-neighbor points in the grid-based algorithm can be controlled to an acceptable level through parameter k. In our experiments, the results demonstrate that GRIDEN can achieve a reliable clustering result that is infinite closed with respect to the exact DBSCAN as parameter k grows, and it requires computational time that is only linear to N.
Author Shi, Yinxue
Song, Jinwei
Deng, Chao
Sun, Ruizhi
Cai, Saihua
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0001-9484-8923
  surname: Deng
  fullname: Deng, Chao
  organization: China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
– sequence: 2
  givenname: Jinwei
  surname: Song
  fullname: Song, Jinwei
  organization: National Space Science Center of CAS, NO.1 Nanertiao, Zhongguancun, Beijing, 100190, China
– sequence: 3
  givenname: Ruizhi
  orcidid: 0000-0001-7267-5283
  surname: Sun
  fullname: Sun, Ruizhi
  email: sunruizhi@cau.edu.cn
  organization: China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
– sequence: 4
  givenname: Saihua
  surname: Cai
  fullname: Cai, Saihua
  organization: China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
– sequence: 5
  givenname: Yinxue
  surname: Shi
  fullname: Shi, Yinxue
  organization: China Agricultural University, 17 Tsinghua East Road, Beijing, 100083, China
BookMark eNqFkE9rGzEUxEVxIU7ab5CDIOfd6q20_3IImNRxA6aB0p6FLL11ZdbSVtIa8u0j45x6aE8PHr-ZYeaaLJx3SMgtsBIYNF8O5aRSQF1WDNoSoGQAH8gSurYqWi7Egiwz1hZdU9dX5DrGA2Os4X23JOPmx_PX9fd7unIUhwF1siek-2BNsVMRDVXOUIMu2vT6_ok5zKqR6nGOCYN1e6rGvQ82_T7S5Gmcp8mHRCcV1DhiBv1xmlPmPpGPgxojfn6_N-TX0_rn47di-7J5flxtCy0YS0WvsepwMH0_4A4rrFnTiJ2o2l09tANwA2A6oVTdCM3BiBaNMQK41sgRjOY35O7iOwX_Z8aY5MHPweVIWbGuh55zqDN1f6F08DEGHKS2KVfzLgVlRwlMnteVB3lZV57XlQAyr5vF4i_xFOxRhdf_yR4uMsz1TxaDjNqi02hsRpM03v7b4A0g_ppv
CitedBy_id crossref_primary_10_1016_j_patrec_2018_03_012
crossref_primary_10_1155_2022_2610711
crossref_primary_10_1016_j_ins_2022_06_027
crossref_primary_10_3233_JIFS_224214
crossref_primary_10_1007_s13042_021_01293_w
crossref_primary_10_3390_pr7090550
crossref_primary_10_1109_ACCESS_2021_3134704
crossref_primary_10_1016_j_engappai_2024_108551
crossref_primary_10_1109_TVCG_2019_2934655
crossref_primary_10_1155_2020_2816102
crossref_primary_10_1155_2021_8894106
crossref_primary_10_1007_s10489_021_02753_0
crossref_primary_10_1587_transinf_2018EDP7299
crossref_primary_10_1155_2022_1507630
crossref_primary_10_1145_3587471
crossref_primary_10_3390_en14216993
Cites_doi 10.1016/j.phpro.2012.02.174
10.1049/cje.2016.05.001
10.1007/11811305_29
10.1126/science.1242072
10.1109/TCYB.2015.2403356
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 15, 2018
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 15, 2018
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2017.11.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 88
ExternalDocumentID 10_1016_j_patrec_2017_11_011
S0167865517304178
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
7SC
7TK
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c400t-9ce28efd99febe2e50664b427b5f7f13d11d84aa564c31d47eddd413cce3e1dc3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434380800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8655
IngestDate Mon Jul 14 09:58:11 EDT 2025
Sat Nov 29 03:58:42 EST 2025
Tue Nov 18 21:15:46 EST 2025
Fri Feb 23 02:24:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Massive spatial data
GRIDEN
Parallel computing
DBSCAN
Data mining
Density-based clustering
Grid-based clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-9ce28efd99febe2e50664b427b5f7f13d11d84aa564c31d47eddd413cce3e1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9484-8923
0000-0001-7267-5283
PQID 2089193315
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2089193315
crossref_citationtrail_10_1016_j_patrec_2017_11_011
crossref_primary_10_1016_j_patrec_2017_11_011
elsevier_sciencedirect_doi_10_1016_j_patrec_2017_11_011
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Gan, Tao (bib0006) 2015
(bib0012) 2005; 2
Ankerst, Breunig, Kriegel (bib0003) 1999
Xiaoyun, Yufang, Yan (bib0021) 2008
K. Bache, M. Lichman, UCI machine learning repository[J]. 2013.
Tsai, Wu (bib0016) 2009
Hinneburg, Gabriel (bib0008) 2007
Rodriguez, Laio (bib0015) 2014; 344
Qiu, Zhang, Shen (bib0013) 2005; 3
Uncu, Gruver, Kotak (bib0017) 2006
Hinneburg, Keim (bib0007) 1998; 98
Ester, Kriegel, Sander (bib0005) 1996; 96
Zhou, Zhou, Jin (bib0022) 2000; 11
Ma, Wang, Tang (bib0011) 2003
Wang, Wang, Li (bib0019) 2006
Viswanath, Pinkesh (bib0018) 2006; 1
Ade (bib0001) March 2013
Ertöz, Steinbach, Kumar (bib0010) 2003
Anguita, Ghio, Oneto (bib0002) 2013
Zhu, Li, Zhang (bib0023) 2016; 46
Darong, Peng (bib0004) 2012; 24
Reiss, Stricker (bib0014) 2012
Wang, Wang, Li (bib0020) 2016; 25
Anguita (10.1016/j.patrec.2017.11.011_bib0002) 2013
Uncu (10.1016/j.patrec.2017.11.011_bib0017) 2006
Reiss (10.1016/j.patrec.2017.11.011_bib0014) 2012
Ma (10.1016/j.patrec.2017.11.011_bib0011) 2003
Xiaoyun (10.1016/j.patrec.2017.11.011_bib0021) 2008
10.1016/j.patrec.2017.11.011_bib0009
Ade (10.1016/j.patrec.2017.11.011_bib0001) 2013
Tsai (10.1016/j.patrec.2017.11.011_bib0016) 2009
Wang (10.1016/j.patrec.2017.11.011_bib0020) 2016; 25
Hinneburg (10.1016/j.patrec.2017.11.011_bib0007) 1998; 98
Ertöz (10.1016/j.patrec.2017.11.011_bib0010) 2003
(10.1016/j.patrec.2017.11.011_bib0012) 2005; 2
Rodriguez (10.1016/j.patrec.2017.11.011_bib0015) 2014; 344
Darong (10.1016/j.patrec.2017.11.011_bib0004) 2012; 24
Hinneburg (10.1016/j.patrec.2017.11.011_bib0008) 2007
Wang (10.1016/j.patrec.2017.11.011_bib0019) 2006
Zhu (10.1016/j.patrec.2017.11.011_bib0023) 2016; 46
Ankerst (10.1016/j.patrec.2017.11.011_bib0003) 1999
Zhou (10.1016/j.patrec.2017.11.011_bib0022) 2000; 11
Gan (10.1016/j.patrec.2017.11.011_bib0006) 2015
Qiu (10.1016/j.patrec.2017.11.011_bib0013) 2005; 3
Viswanath (10.1016/j.patrec.2017.11.011_bib0018) 2006; 1
Ester (10.1016/j.patrec.2017.11.011_bib0005) 1996; 96
References_xml – reference: K. Bache, M. Lichman, UCI machine learning repository[J]. 2013.
– volume: 1
  start-page: 912
  year: 2006
  end-page: 915
  ident: bib0018
  article-title: l-dbscan: a fast hybrid density based clustering method[C]
  publication-title: 18th International Conference on Pattern Recognition (ICPR'06)
– volume: 24
  start-page: 1166
  year: 2012
  end-page: 1170
  ident: bib0004
  article-title: Grid-based DBSCAN algorithm with referential parameters[J]
  publication-title: Phys. Proc.
– volume: 11
  start-page: 735
  year: 2000
  end-page: 744
  ident: bib0022
  article-title: FDBSCAN: a fast DBSCAN algorithm[J]
  publication-title: Ruan Jian Xue Bao
– start-page: 49
  year: 1999
  end-page: 60
  ident: bib0003
  article-title: OPTICS: ordering points to identify the clus-tering structure[C]
  publication-title: SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1–3, 1999
– start-page: 214
  year: 2003
  end-page: 225
  ident: bib0011
  publication-title: International Conference On Web-Age Information Management
– start-page: 519
  year: 2015
  end-page: 530
  ident: bib0006
  article-title: DBSCAN revisited: mis-claim, un-fixability, and approxima-tion[C]
  publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM
– year: March 2013
  ident: bib0001
  article-title: A faster algorithm for DBSCAN. Master's thesis
– volume: 98
  start-page: 58
  year: 1998
  end-page: 65
  ident: bib0007
  article-title: An efficient approach to clustering in large multimedia databases with noise[C]
  publication-title: KDD
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: bib0005
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise[C]
  publication-title: Kdd
– start-page: 2976
  year: 2006
  end-page: 2981
  ident: bib0017
  article-title: GRIDBSCAN: GRId Density-Based Spatial Cluster-ing of Applications with Noise[
  publication-title: IEEE International Conference on Systems.
– year: 2013
  ident: bib0002
  article-title: A public domain dataset for human activity recognition using smartphones[C]
  publication-title: ESANN
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0015
  article-title: Clustering by fast search and find of density peaks[J]
  publication-title: Science
– volume: 25
  start-page: 397
  year: 2016
  end-page: 402
  ident: bib0020
  article-title: Clustering by fast search and find of density peaks with data field[J]
  publication-title: Chin. J. Electr.
– volume: 2
  year: 2005
  ident: bib0012
  publication-title: Data Mining and Knowledge Discovery Handbook.
– start-page: 263
  year: 2006
  end-page: 270
  ident: bib0019
  article-title: Mining spatial-temporal clusters from geo-databases[J]
  publication-title: Adv. Data Mining Appl.
– volume: 46
  start-page: 450
  year: 2016
  end-page: 461
  ident: bib0023
  article-title: Block-row sparse multiview multilabel learning for image classification[J]
  publication-title: IEEE Trans. Cybern.
– start-page: 47
  year: 2003
  end-page: 58
  ident: bib0010
  article-title: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data[C]
  publication-title: Proceedings of the 2003 SIAM International Conference on Data Mining
– start-page: 108
  year: 2012
  end-page: 109
  ident: bib0014
  article-title: Introducing a new benchmarked dataset for activity monitoring[C]
  publication-title: Wearable Computers (ISWC), 2012 16th International Symposium on
– volume: 3
  start-page: 1509
  year: 2005
  end-page: 1512
  ident: bib0013
  article-title: Grid-based clustering algorithm for multi-density[C]
  publication-title: Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on. IEEE
– start-page: 780
  year: 2008
  end-page: 783
  ident: bib0021
  article-title: GMDBSCAN: multi-density DBSCAN cluster based on grid[C]
  publication-title: e-Business Engineering, 2008. ICEBE'08. IEEE International Conference on
– start-page: 70
  year: 2007
  end-page: 80
  ident: bib0008
  article-title: Denclue 2.0: Fast clustering based on kernel density estimation[C]
  publication-title: International Symposium on Intelligent Data Analysis
– year: 2009
  ident: bib0016
  article-title: GF-DBSCAN: a new efficient and effective data clustering technique for large databases[C]
  publication-title: Proceedings of the 9th WSEAS International Conference on Multimedia Systems & Signal Processing. World Scientific and Engineering Academy and Society (WSEAS)
– year: 2013
  ident: 10.1016/j.patrec.2017.11.011_bib0002
  article-title: A public domain dataset for human activity recognition using smartphones[C]
– start-page: 214
  year: 2003
  ident: 10.1016/j.patrec.2017.11.011_bib0011
– volume: 24
  start-page: 1166
  year: 2012
  ident: 10.1016/j.patrec.2017.11.011_bib0004
  article-title: Grid-based DBSCAN algorithm with referential parameters[J]
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2012.02.174
– volume: 2
  year: 2005
  ident: 10.1016/j.patrec.2017.11.011_bib0012
– volume: 25
  start-page: 397
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2017.11.011_bib0020
  article-title: Clustering by fast search and find of density peaks with data field[J]
  publication-title: Chin. J. Electr.
  doi: 10.1049/cje.2016.05.001
– start-page: 49
  year: 1999
  ident: 10.1016/j.patrec.2017.11.011_bib0003
  article-title: OPTICS: ordering points to identify the clus-tering structure[C]
– start-page: 263
  year: 2006
  ident: 10.1016/j.patrec.2017.11.011_bib0019
  article-title: Mining spatial-temporal clusters from geo-databases[J]
  publication-title: Adv. Data Mining Appl.
  doi: 10.1007/11811305_29
– start-page: 780
  year: 2008
  ident: 10.1016/j.patrec.2017.11.011_bib0021
  article-title: GMDBSCAN: multi-density DBSCAN cluster based on grid[C]
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.patrec.2017.11.011_bib0005
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise[C]
  publication-title: Kdd
– volume: 98
  start-page: 58
  year: 1998
  ident: 10.1016/j.patrec.2017.11.011_bib0007
  article-title: An efficient approach to clustering in large multimedia databases with noise[C]
  publication-title: KDD
– start-page: 70
  year: 2007
  ident: 10.1016/j.patrec.2017.11.011_bib0008
  article-title: Denclue 2.0: Fast clustering based on kernel density estimation[C]
– volume: 3
  start-page: 1509
  year: 2005
  ident: 10.1016/j.patrec.2017.11.011_bib0013
  article-title: Grid-based clustering algorithm for multi-density[C]
– start-page: 47
  year: 2003
  ident: 10.1016/j.patrec.2017.11.011_bib0010
  article-title: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data[C]
– year: 2009
  ident: 10.1016/j.patrec.2017.11.011_bib0016
  article-title: GF-DBSCAN: a new efficient and effective data clustering technique for large databases[C]
– volume: 1
  start-page: 912
  year: 2006
  ident: 10.1016/j.patrec.2017.11.011_bib0018
  article-title: l-dbscan: a fast hybrid density based clustering method[C]
– year: 2013
  ident: 10.1016/j.patrec.2017.11.011_bib0001
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.patrec.2017.11.011_bib0015
  article-title: Clustering by fast search and find of density peaks[J]
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 11
  start-page: 735
  issue: 6
  year: 2000
  ident: 10.1016/j.patrec.2017.11.011_bib0022
  article-title: FDBSCAN: a fast DBSCAN algorithm[J]
  publication-title: Ruan Jian Xue Bao
– start-page: 2976
  year: 2006
  ident: 10.1016/j.patrec.2017.11.011_bib0017
  article-title: GRIDBSCAN: GRId Density-Based Spatial Cluster-ing of Applications with Noise[C]
– ident: 10.1016/j.patrec.2017.11.011_bib0009
– volume: 46
  start-page: 450
  issue: 2
  year: 2016
  ident: 10.1016/j.patrec.2017.11.011_bib0023
  article-title: Block-row sparse multiview multilabel learning for image classification[J]
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403356
– start-page: 519
  year: 2015
  ident: 10.1016/j.patrec.2017.11.011_bib0006
  article-title: DBSCAN revisited: mis-claim, un-fixability, and approxima-tion[C]
– start-page: 108
  year: 2012
  ident: 10.1016/j.patrec.2017.11.011_bib0014
  article-title: Introducing a new benchmarked dataset for activity monitoring[C]
SSID ssj0006398
Score 2.3689795
Snippet •Propose a new effective density-based and grid-based clustering algorithm GRIDEN for massive spatial data.•Present a new concept of ε-neighbor cells to...
Density-based clustering has been widely used in many fields. A new effective grid-based and density-based spatial clustering algorithm, GRIDEN, is proposed in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Algorithms
Clustering
Computer applications
Computing time
Data mining
DBSCAN
Delta cells
Density
Density-based clustering
Grid-based clustering
GRIDEN
Massive spatial data
Mathematical analysis
Parallel computing
Parallel processing
Parameters
Spatial data
Title GRIDEN: An effective grid-based and density-based spatial clustering algorithm to support parallel computing
URI https://dx.doi.org/10.1016/j.patrec.2017.11.011
https://www.proquest.com/docview/2089193315
Volume 109
WOSCitedRecordID wos000434380800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMc-CggCgXtgVvlKrbX2V1uUQhQDlFFi5SbZXvXjSvjRIldCv-Ef8uMd9dJKaiAxMWKNtnEyjzPPI9n3hDyKo8iLnGgCVOce4ypzJMqHXhC5UOmYFfEzLAJPp2K2Uwe93rfXS_MRcmrSlxeyuV_NTWsgbGxdfYvzN19KSzAazA6HMHscPwjw7_7ePRmMrUJP1OugdVBZ6tCeRizWm3WA4WF6_VXu7LGumpUCikbFE5oGxfLs8WqqOefkZ2umyXy9AMUCi9LXbaV6E3twp4lt8etVif2x9iiJEBW2bYLbabXa-NbxvNk0SV3XFVwUX3RxeYplckONMW3ebc4NsOzT5Ji3iTbCQtfYCbUtGyaLNq1ThqT2ASHjU2yJi4ZZyw4sP_Q6EN23nogt_ytGffiIrf4ZUww6YnzQ3y4oFG10ueHKNxqnfxVte0TPBE8Dx9cH_O5uEV2Ah5J0Sc7o6PJ7EMX5oHaCSccjxtcX2ZbPHj9t37He35iAC2tOX1A7tn7EToyOHpIerraJffdrA9qXf8uubslXPmIlAZkr-mooh3E6AZiFCBGr0CMWojRDcRoBzFaL6iFGHUQox3EHpNPbyen4_eendvhZRARak9mOhA6V1LmcLEHOgJay1IW8DTKee6HyveVYEkSDVkW-opxrZQCMpVlOtS-ysInpF8tKv2U0JANZSR0IpNhytJAprlIBzoUTKdpGii2R0L3r8aZFbXH2Spl7KoXz2NjixhtAfe7Mdhij3jdrqURdbnh89wZLLbE1BDOGDB2w859Z9_Y-og1vC8k3DeFfvTsn7_4Obmzubb2Sb9eNfoFuZ1d1MV69dJi9QfnScJP
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRIDEN%3A+An+effective+grid-based+and+density-based+spatial+clustering+algorithm+to+support+parallel+computing&rft.jtitle=Pattern+recognition+letters&rft.au=Deng%2C+Chao&rft.au=Song%2C+Jinwei&rft.au=Sun%2C+Ruizhi&rft.au=Cai%2C+Saihua&rft.date=2018-07-15&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=109&rft.spage=81&rft.epage=88&rft_id=info:doi/10.1016%2Fj.patrec.2017.11.011&rft.externalDocID=S0167865517304178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon